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Abstract— Consider N players, where the action of player
n is a number in the interval [0, Bn] that is interpreted as its
“pull”. Each player has a reward function that depends on all
actions. We define Tug-of-War (ToW) games where increasing
the action of one player decreases the rewards of all others.
Tug-of-War games can model networking scenarios such as
transmission power control and activation in sensor networks.
We propose Tug-of-Peace algorithm, a simple stochastic approx-
imation, and prove that in Tug-of-War games, it converges to
a equilibrium that satisfies a target feasible Quality of Service
reward vector for the players. Moreover, with high probability
it converges to the “minimal pull” equilibrium. Our algorithm
uses infrequent 1-bit communication between the players, but
we also propose a fully distributed modification that does not
require any communication at all and achieves almost the same
guarantees. We then simulate our algorithms in the power
control and sensor activation scenarios.

I. INTRODUCTION

In many network scenarios, a conflict arises between
the devices regarding how to share the medium. Examples
are transmission power control in wireless networks, and
activation probability in sensor networks. Each device has
a local measure of performance, such as its throughput or
energy consumption. When a device uses more power to
transmit, it increases its throughput but decreases that of
others. When a sensor, which collects its own data but also
relays those of others, is activated with lower probability,
it improves its energy consumption but worsens the packet
loss rate of others. These conflicts are naturally modeled as
a game between the devices.

A conflict between devices, however, does not mean that
devices are selfish. The devices are programmable and run
the protocol we design (e.g., in wireless protocols such as
WiFi and 5G). Moreover, the devices (or players) often just
have a minimum requirement of reward which we term
as their Quality of Service (QoS). We wish to design a
distributed algorithm that allows each player to achieve
their QoS asymptotically. The challenge in designing such
a protocol is that players often just observe bandit feedback,
i.e., a noisy version of the reward at the current action profile.
The players do not know their reward function, the actions of
other players or the reward received by other players. Hence
the challenge is to know whether to “insist” on improving
their local reward or give up in favor of others.. In large-
scale networks with thousands or millions of devices, this
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coordination challenge is the primary design bottleneck.
In this paper, we present a class of games with one-

dimensional actions where increasing the action of one player
decreases the rewards of others. We name this class of
games Tug-of-War (ToW) games, due to their resemblance
of players pulling a rope in opposite directions. We show
that transmission power control and activation in sensor
networks can both be modeled as ToW games (Section V).
The importance of this class of games is twofold: it captures a
common interaction in networking applications, and it allows
for efficient coordination for players that are seeking to learn
QoS guarantees.

We design a simple distributed algorithm (Algorithm 1)
which converges with probability 1 to an action profile
that satisfies the given QoS requirements for all players,
under the assumption that the QoS requirements are feasible.
Additionally, we show that with high probability, Algorithm
1 converges to the minimal action profile (Definition 2) which
satisfies the QoS requirements. This algorithm requires infre-
quent (i.e., at finite timesteps), one-bit communications. We
also present an algorithm (Algorithm 2) for the case where
even one-bit communication is not possible. We show that
this algorithm also converges to the minimal action profile
with high probability. We name these algorithms Tug-of-
Peace since, instead of pulling the rope as hard as they
can, players learn to place the marker at a point where they
can all achieve their target QoS. Finally, we demonstrate
in simulations the performance of our algorithm for power
control and sensor activation.

A. Related Work

QoS is a common objective in transmission power control
in wireless networks [1]–[5]. This application is a special
case of our model, which we study in Subsection V-A.

The algorithms presented by these works for QoS in power
control exploit the form of the reward function, which they
assume is known. A known form for a reward function is
a reasonable assumption when designing an algorithm for a
specific application. Our algorithm, on the other hand, does
not need to know the reward functions, as long as the game
is a ToW game.

The results of [4] provide an algorithm for power control,
where assumptions are made on the knowledge available
to the players. The algorithm needs each player to know
the channel gain between itself and its intended receiver.
[1] removes this assumption but it fails to converge in the
presence of noise (as shown by [2]). The results in [2], [3]
are the closest to our algorithm as they are also stochastic
approximation algorithms that can handle noise and do not



assume further knowledge of the system. But they have
different assumptions as they require an unbiased estimator
of the inverse reward, i.e., the inverse of the Signal-to-
Interference Ratio (SIR).

The analysis methods of [1]–[4] are specific to the power
control wireless scenario. Their analysis depends on the
eigenvalues of a matrix defined by using the channel gain
matrix and the QoS vector. As an example, [2] models the
problem as finding the solutions of a linear system, and its
analysis then depends on the eigenvalue properties of this
linear system. This model and properties are specific to that
scenario and cannot be extended to our broader class of
games. Other works such as [5] take a general approach,
but also with certain limitations. They use the properties
of monotone and sub-homogeneous maps to show the con-
vergence of the algorithm they design. These properties are
facilitated by the structure of power control games. However,
designing an algorithm that satisfies these properties is not
immediately obvious for other general games. Additionally,
the algorithm presented here is better equipped to deal with
noise than the algorithm by [5], as we show later.

A key step in the analysis in [1], [2], [5] is that their
assumptions guarantee the existence of a unique equilibrium
that satisfies un(x) = λn for all n, where un(x) is the
reward received by player n at action profile x and λn is
their QoS requirement. Furthermore, this point is guaranteed
to be globally asymptotically stable. On the other hand,
these properties are not guaranteed in general ToW games.
Moreover, the action sets in a ToW game are bounded which
gives rise to undesirable equilibria at the boundaries. Due
to the observation noise, it is tricky to guarantee to which
equilibrium the algorithm would converge. As we later see
in Section III, we still give guarantees on convergence, and
results which show that our algorithms converge to the “best”
equilibrium with high probability.

Given the general analysis and because we deal with
unknown reward functions, our algorithm and its guarantees
carry over to applications beyond power control with no
modifications needed. One such example is activation in
sensor networks, which we study in Subsection V-B. In this
application, the observations are noisy and it is unreasonable
to assume knowledge of the reward functions.

Beyond power control, distributed protocols with QoS
guarantees were studied in [6], [7]. The work in [6] consid-
ered a multiplayer bandit scenario where, if multiple players
pick the same arm, they all receive zero reward. This is a spe-
cial case of a game that is different from the class of games
we consider. The work in [7] considers a general discrete
game, but the algorithm uses regular communication between
the players. Compared to both algorithms in [6], [7], our
proposed algorithm here has substantially better scalability
in the number of players. Furthermore, our algorithm has two
variants that either require 1-bit of infrequent communication
or no communication at all.

To analyze the convergence of our algorithm, we use the
Ordinary Differential Equation (ODE) approach to stochastic
approximation [8] and the concept of Cooperative ODEs and

Monotone Dynamical Systems [9]. Apart from their use in
dynamical systems, these ODEs have been widely used in
fields such as epidemiology [10], [11], social networks [12],
[13] and queueing systems [14].

B. Notation

We use bold letters to denote vectors and 0N to denote the
all-zero vector of N-dimensions. We also use ΠX to denote
the Euclidean projection into the set X . We further use the
standard vector inequalities, where x ≤ y denotes xi ≤ yi
for all i. Similarly, we use the notation x ∈ [z,y] to denote
zi ≤ xi ≤ yi for all i.

II. PROBLEM FORMULATION

Consider a set of N players N = {1, . . . , N} where each
player n takes action xn ∈ Xn where Xn := [0, Bn] ⊆ R+.
Let X = X1 × . . . × XN . Also define the interior of this
region as X o = (0, B1)× . . .× (0, BN ). Each player n has
a reward function un(x) : X 7→ R. We now define ToW
games:

Definition 1. A game is a Tug-of-War (ToW) game if for
all players n ∈ N , the reward function un(·) is continuously
differentiable and satisfies the following condition:

∂un(x)

∂xm
< 0,∀ m ̸= n ∈ N ,x ∈ X o. (1)

Furthermore, we assume that for all n, un(x) = 0 if xn = 0
and un(x) ≥ 0,∀n ∈ N ,x ∈ X .

Intuitively, these are games where if a player increases
their action keeping all else constant, then the reward of
other players would drop. A broad class of games satisfying
this condition are resource allocation games [15], [16]. In
such games, the action taken by each player denotes the
amount of resource used by that player; if a player increases
their resource use then other players’ reward would drop
if they maintain their resource use. Definition 1 makes
no assumption on the impact of a player’s reward upon
changing their own action (i.e., no assumption on ∂un/∂xn).
This allows this definition to handle other types of resource
allocation games, as well as games such as the application
in Section V-B. We study two concrete examples of ToW
games in Section V.

Each player n takes action xn(t) at each timestep t ≥ 0. At
each turn t, each player just receives a noisy variant yn(t)
of its actual reward un(x(t)). We assume that the reward
yn(t) received by player n satisfies yn(t) = un(x(t)) +
Mn(t), where M(t) := [M1(t), . . . ,MN (t)] is a Martingale
difference sequence, i.e., E[M(t)|Ft−1] = 0 where Ft :=
σ(x(s),M(s), s ≤ t). We additionally assume that M(t)

has bounded support, i.e., |Mn(t)| ≤ M̂ , w.p. 1, for all
n ∈ N , t ≥ 0 for some positive M̂ . Players receive no
information about the actions played by other players.

Our aim is to design a distributed algorithm such that each
player n asymptotically achieves a reward of at least λn > 0,
which we collectively denote as the Quality of Service (QoS)



vector λ. This is not possible for all λ and hence we make
the following feasibility assumption:

Assumption 1. (a) There exists a x ∈ X o and δ > 0 such
that un(x) ≥ λn + δ for all players n.

(b) Let u(·) denote the vector valued function
[u1(·), . . . , uN (·)] and Du(x) denote the Jacobian
at x. For λ chosen uniformly at random in [λ,λ+ δN ],
the Jacobian Du(x̂), at points x̂ satisfying u(x̂) = λ,
has no purely imaginary eigenvalues.

The first part of this assumption ensures that the QoS
vector of rewards is feasible and can be achieved in the
interior of the set X . Here δ can be infinitesimally small.
There could be multiple such points. Since the action of the
player is a measure of “pull” (e.g., power), we prefer the
equilibrium point where all elements are “minimal” (i.e., no
other equilibrium exists where even one element is smaller).

The parameter δ is also needed for technical reasons. For
an arbitrary QoS vector λ, the QoS might be achieved at
an equilibrium point that is not stable for our algorithm
[17]. Under Assumption 1, the equilibrium point is stable
with probability 1 if we take a QoS vector at random in
this region. The second part of the assumption is very mild
for matrices with non-zero eigenvalues, since perturbing a
matrix that has purely imaginary eigenvalues adds a non zero
real part to these eigenvalues [14], [17, Section 8.4]. Hence,
for randomly chosen λ, the Jacobian Dh(x∗) does not have
purely imaginary eigenvalues.

III. DISTRIBUTED ALGORITHMS

We present two algorithms in this section. The Tug-of-
Peace (ToP) algorithm converges with probability 1 to a
point where each player n receives at least reward λn, but
it requires 1-bit communication between players at some
timesteps. We later show that this communication is required
only a finite number of times. The Fully Distributed Tug-
of-Peace (FDToP) algorithm is for the case where strictly
no communication is possible. The guarantees suffer in this
case, but we give a result on convergence to an action vector
that satisfies the QoS requirement with high probability.

A. Tug-of-Peace Algorithm

We now give an intuitive explanation for the workings of
Algorithm 1.

Each player first samples a λn uniformly at random from
the narrow interval [λn, λn+δ]. This randomization is just a
technical step and is done to ensure the almost sure stability
of equilibrium points. Note that this does not affect the QoS
requirement, as any point which satisfies un(x) = λn ≥ λn

satisfies the QoS requirement for that player.
Now let us discuss the iteration performed by each player.

For simplicity, first consider a case where there is no noise,
so each player observes their exact reward, i.e., yn(t) =
un(x(t)). Then the idea behind the algorithm is that each
player n starts with action 0 and as they receive reward
lower than its QoS requirement, they increase their action.
This increase is at a rate proportional to its ‘dissatisfaction’,

i.e., proportional to how far their reward is from the QoS
requirement. By definition of ToW games, this causes a drop
in reward received by other players which encourages them
to increase their own actions. This ‘cooperative’ increase in
actions eventually leads to convergence to an equilibrium
point.

Even if there exists a feasible point in the interior, the noise
can cause a player to reach the boundary and get stuck there.
To avoid this, when a player tries to exceed the boundary, it
sends a signal to other players stating that it might be stuck
at the boundary. On receiving such a signal, all players return
back to the action 0. This resets the iteration and brings it to
a point that is in the domain of attraction of an equilibrium
where the QoS condition is satisfied. With a lower starting
stepsize after the reset, as required by Assumption 2, the
probability of reaching the boundary due to noise is lower.

The signal that indicates a player is stuck at the boundary
carries 1-bit of information. Furthermore, we show that these
resets happen only a finite number of times with probability
1. Hence the communication overhead of Algorithm 1 is
negligible. The way to implement this communication is
application dependent. For example, communication between
devices is more obvious in routing in sensor networks than
in power control.

We need to choose appropriate stepsizes to deal with noise
and the resets, which is given by the following assumption:

Assumption 2. The stepsize sequence 0 < η(t) < 1 for
t ≥ 0 satisfies the following:∑

t

η(t) = ∞,
∑
t

η(t)2 < ∞ and η(t+ 1) < η(t) ∀t.

There may exist multiple equilibria which satisfy the QoS
requirement. They are not all equally desirable since some
require more “pull” from the players than others (e.g., more
energy or power). Our algorithm selects with high probability
the “minimal equilibrium”, in the following sense:

Definition 2. x∗ is defined as the minimal equilibrium if
among all equilibrium points x̂ which satisfy un(x̂n) = λn,
x∗ is the smallest component-wise, i.e., x∗n

≤ x̂n for all n.

The existence of such an equilibrium point is guaranteed
by Lemma 1 in the next section. Our main result gives
convergence guarantees for the Tug-of-Peace algorithm:

Theorem 1. Under assumptions 1-2, the following state-
ments hold:

(a) With probability 1, the iterates of Algorithm 1 converge
to an equilibrium point x̂ which satisfies un(x) = λn ≥
λn for all n. Moreover, the reset to x(t) = 0N happens
only a finite number of times with probability 1.

(b) The iterates of Algorithm 1 converge to x∗ with proba-
bility 1−ε({η}) where ε({η}) goes to zero as η(0) goes
to zero.

Here the notation ε({η}) denotes the dependence of the
probability on the stepsize sequence {η(t)}. The dependence
on general η(0) has been omitted here for simplicity. But as



an example, consider the stepsize sequence η(t) = 1/(t +
t0)

µ for sufficiently large t0 > 0 and 0.5 < µ ≤ 1, then
ε({η}) = O

(
t
1−µ/2
0 exp

(
−Ct

µ/2
0

))
for some constant

C > 0.

Algorithm 1 Tug-of-Peace Algorithm
Initialization: Let xn(0) = 0, ∀n ∈ N and η(t) be the
stepsize sequence. Let λn ∼ Unif[λn, λn+δ] for some δ > 0.
At timesteps t = 0, 1, . . ., each player n ∈ N
(1) Plays action xn(t) and observes a noisy reward yn(t).
(2) Updates their action as follows:

xn(t+ 1) = ΠXn
(xn(t) + η(t)(λn − yn(t))), (2)

where ΠXn
denotes the Euclidean projection into [0, Bn].

(3) Transmits signal sn = 1 if xn(t+1) = Bn, otherwise it
does nothing (i.e., sn = 0).

(4) Resets action to 0, i.e., xn(t + 1) = 0 upon receiving
sm = 1 from some player m.

End

B. Fully Distributed Tug-of-Peace Algorithm

If even the 1-bit communication is not possible between
the players, then a player cannot signal that it might be
stuck at the boundary. If just that player resets its action to
zero, then the resulting action vector might still be outside
the domain of attraction of a desirable equilibrium. Hence,
a reset mechanism is no longer an option with no com-
munication. For scenarios like power control, where digital
communication is not yet established between the devices,
1-bit signaling requires a special design which can become
an implementation burden.

Instead, in the fully distributed version of ToP we propose
that a player that is stuck at the boundary just projects their
action back to the boundary hoping that other players might
help it reach the QoS later. This modification of the algorithm
is detailed in Algorithm 2.

Algorithm 2 Fully Distributed Tug-of-Peace Algorithm
Initialization: Let xn(0) = 0, ∀n ∈ N and η(t) be the
stepsize sequence. Let λn ∼ Unif[λn, λn+δ] for some δ > 0.
At timesteps t = 0, 1, . . ., each player n ∈ N
(1) Plays action xn(t) and observes a noisy reward yn(t).
(2) Updates their action as follows:

xn(t+ 1) = ΠXn
(xn(t) + η(t)(λn − yn(t))), (3)

where ΠXn
denotes the Euclidean projection into [0, Bn].

End

The following result gives guarantees for the Fully Dis-
tributed Tug-of-Peace algorithm.

Theorem 2. Under assumptions 1-2, the iterates of Algo-
rithm 2 converge with probability 1 to a point. The iterates
of Algorithm 2 converge to x∗, as defined in Definition 2,

with probability 1− ε({η}) where ε({η}) goes to 0 as η(0)
goes to 0.

The algorithm converges with probability 1. As opposed
to Algorithm 1, the fully distributed version can technically
converge to a bad equilibrium, where one or more players are
stuck at the boundary, i.e., ∃n, s.t., x̂n = Bn. However, the
second part of the theorem states that with high probability
(depending on the stepsize), not only the algorithm does not
converge to such a bad equilibrium, but it even converges to
the best one possible. In particular, this “best” equilibrium
satisfies the QoS condition, i.e., un(x̂) = λn for all players
n and is “minimal”.

IV. CONVERGENCE ANALYSIS

Our convergence analysis relies on stochastic approxima-
tion and the ODE method [8]. In particular, we consider the
ODE:

ẋ(t) = h(x(t)), (4)

where hn(x(t)) = λn − un(x(t)). While we formally
show how this ODE relates to our iterations later, it can
be intuitively observed that, ignoring resets and the projec-
tions in iterations (2) and (3), these iterations are a noisy
discretization of this ODE.

By definition of a ToW game, this ODE satisfies the
property ∂hn

xm
> 0 for all n ̸= m ∈ N . Such an ODE is called

a cooperative ODE [18], [19]. We have already assumed
that there exists an equilibrium point for this ODE in the
region X o (Assumption 1(a)). Then this class of ODEs have
certain desirable convergence properties, which we restate in
the following lemma:

Lemma 1. The ODE given by (4) satisfies the following
properties:
(a) [20, Theorem 2.1] For initial conditions in an open

dense set, the solutions of (4) converge to an equilibrium.
(b) [9, Theorem 5.6] There exists a minimal equilibrium x∗

of (4) such that any other equilibria x̂ satisfies x∗n
≤ x̂n

for all n ∈ N .
(c) [19] The dynamical system described by (4) is mono-

tone, i.e., if there are two solutions x(·) and x′(·) of (4)
with x(0) ≥ x′(0), then x(t) ≥ x′(t) for all t ≥ 0.

The first statement of the lemma implies that solutions
of the ODE (4) will converge to an equilibrium point
that satisfies the QoS requirement. The last two statements
together imply that any solution of the ODE initiated in the
region [0N ,x∗] will stay in the region [0N ,x∗] for all t. The
following lemma shows that the equilibrium x∗ is a stable
equilibrium with probability 1:

Lemma 2. The equilibrium point x∗ is a stable equilibrium
point for the ODE (4) with probability 1. Moreover, it is a
Locally Asymptotically Stable Equilibrium (LASE) [8, B.3].

Proof. Let u(·) denote the vector function
(u1(·), . . . , uN (·))T . Then Dh(x) = −Du(x) for all
x, where Dh(x) and Du(x) denote the Jacobians of
functions h and u, respectively, computed at x. Then Sard’s



Lemma [21] states that the image of points for which
the Jacobian Du(·) is nonsingular has Lebesgue measure
zero, i.e., the set of points z such that u(x) = z and
Du(x) = 0 has Lebesgue measure zero. Let this set with
Lebesgue measure zero be denoted by Z . Since each λ is
chosen uniformly from the set [λn, λn + δ], λ /∈ Z with
probability 1. This implies that Dh(x∗) is nonsingular a.s.
which implies that the equilibrium point x∗ is a.s. isolated.
Using Assumption 1(b), the Jacobian Dh(x∗) does not have
purely imaginary eigenvalues a.s. and hence the equilibrium
x∗ is hyperbolic a.s. Theorem 4.1.1 from [22] states that if
the minimal equilibrium x∗ is hyperbolic, then it is a stable
equilibrium. We know that the solutions of (4) converge,
and hence x∗ is also a LASE.

The implication of this lemma is that any solution of the
ODE initiated in [0,x∗] will converge to the equilibrium
point x∗ and hence x = 0N is in the domain of attraction
of the LASE x∗. We use this fact later in Lemma 4, but
the next lemma gives a result on the convergence of the
iteration (3) in the Fully Distributed Tug-of-Peace algorithm
to an ODE and therefore to equilibria. This result follows
from [23, Section 5.1].

Lemma 3. Under assumptions 1-2, the following two state-
ments hold:

(a) The iterates of Algorithm 2 asymptotically track the
solutions of the ODE

ẋ(t) = h(x(t)) + b(x(t)), (5)

with probability 1. Here b(x(t)) is zero in [0, B1)×. . .×
[0, BN ) and bn(x(t)) = −hn(x(t)) if xn(t) = Bn and
hn(x(t)) > 0.

(b) With probability 1, the iterates of Algorithm 2 converge
to some equilibrium point x̂ which may be of the
following form:

• un(x̂) = λn, x̂n < Bn for all players n,
• ∃ n s.t. x̂n = Bn.

The term b(·) is the projection term and is the force
required to keep x(t) inside X at all times. The second
part of the lemma states the introduction of equilibria at the
boundary which may or may not satisfy our QoS condition.
The projection term b(·) does not appear at 0, the lower
boundary, because un(x) = 0 if xn = 0 and hence hn(x) >
0 at the boundary for xn = 0. This implies that the driving
vector field of h points inward at 0, so b(x) = 0 at the
lower boundary. For Algorithm 1, neither of the boundary
projections have an impact. Just like the explanation above,
the projection at the lower boundary has no effect and the
upper boundary projections are followed by a reset, which
restart the iteration.

The following lemma lower bounds the probability that
the iterates of (2) or (3) will remain in a small ball around
an equilibrium x∗ from some time onward, if x(t) = 0N

for some t.

Lemma 4. For a system satisfying assumptions 1-2, and
large enough t′, T , and small enough ϵ, the iterates of
Algorithm 1 and 2 satisfy the following:

P (∥x(t)−x∗∥ ≤ ϵ, ∀t ≥ t′+T+1 | x(t′) = 0N ) ≥ 1−c(t′),

where the probability sequence c(t) satisfies
∑

t c(t) < ∞.

Proof. Since x∗ lies in the interior of X o, the boundary
term in (5) does not affect its stability properties. So, x∗
is a LASE for both ODEs (4) and (5) and 0N is in the
domain of attraction for both these ODEs. As the map h(·)
is continuously differentiable, and we have assumed that the
Martingale difference sequence is bounded, we satisfy the
assumptions of [24]. The high probability result then follows
from Theorem 1.1 of [24].

The ”large enough” values for t′, T and 1/ϵ depend on
the eigenvalues of the Jacobian at x∗, i.e., eigenvalues of
the matrix Dh(x∗). Since we care only about convergence,
the only dependence that affects us is t′ as it relates to the
stepsize choice. As a corollary, the result is valid from t′ = 0
onward if the stepsize η(0) is small enough. Moreover, c(0)
goes to zero as η(0) goes to zero.

With the tools developed above, we finally give the proof
for our main result in Theorem 1.

Proof of Theorem 1 (a). Let A(t′) denote the negation of
the set in the conditional probability in Lemma 4, i.e.,

A(t′) = {∃ t ≥ t′ + T + 1 s.t.∥x(t)− x∗∥ ≥ ϵ}.

Then we know that P (A(t′) | xt′ = 0N ) ≤ c(t′). The fact
that c(t) is summable implies that with probability 1∑

t′

P (A(t′) | x′
t = 0N )I{x′

t = 0N} < ∞.

Finally, through an extension of Borel-Cantelli Lemma [25,
Corollary 5.29], we have that with probability 1:∑

t′

I{A(t′),x(t′) = 0N} < ∞.

This implies that x(t) from Algorithm 1 converges to x∗ on
the set {Resets happen infinitely often} with probability 1.

Suppose the algorithm resets back to 0N infinitely often,
then the above argument shows that the algorithm would con-
verge to x∗. This leads to a contradiction to our assumption
that infinite resets happen. And hence the algorithm resets
only finitely often. Let τ denote the last such reset. Then for
t > τ , the iterates of (2) always stay in the interior of X .
Then the iterates a.s. asymptotically track the solutions of
the ODE (4). Hence they converge to an equilibrium point
of the form x̂ which satisfies x̂n = λn for all players n. This
completes the proof for Theorem 1.

Proof of Theorem 1 (b). As the algorithm is initialized at
x(0) = 0N , for small enough initial stepsize η(0), Lemma
4 can be applied for t′ = 0. And hence with probability
1− c(0), the iterates stay in the ϵ-vicinity of x∗ from some



T onwards and converge to x∗ as x∗ is a LASE. Again, note
that c(0) goes to zero as η(0) goes to zero.

Part (b) of Lemma 3 and the proof for part (b) of Theorem
1 together complete the proof for Theorem 2.

V. APPLICATIONS

We now study two problems that can be modeled using
ToW games and the QoS achievability problem.

A. Power Control in Wireless Networks

In power control, the players are N transmitter-receiver
pairs, so transmitter n wishes to transmit to receiver n.
Each user is allocated an orthogonal channel for their com-
munication. For each player n, the action xn denotes the
transmission power of the signal transmitted by user n. The
interference experienced by receiver n is given by In(x) =∑

m ̸=n gm,nxm, where gm,n > 0 is the channel gain between
the transmitter of player m and receiver of player n. Each
receiver also faces additional additive Gaussian noise with
variance N0. Then the utility of each user (player) n is the
Signal-to-Interference Ratio (SIR) given by:

un(x) =
gn,nxn

N0 + In(x)
. (6)

A common objective of power control in wireless networks
is to find the minimum power of transmission (or action
profile) for each player such that all users satisfy their QoS
requirement. Centralized control is not possible due to a
range of issues including latency, communication overhead,
and the additional infrastructure required.

In a distributed setting, each player is only able to get a
noisy estimate of their SIR, more about which can be found
in [26]. The estimation noise can be modeled as Martingale
difference noise, as shown in [2]. This game can be modeled
as a ToW game since the utility function satisfies:

∂un

∂xm
= − gn,ngm,nxn

(N0 + In(x))2
< 0

for all m ̸= n and x ∈ X o. There are multiple different
assumptions on λ and the matrix G = [gm,n] in the literature
[1], [2] which all result in the existence of a point that
satisfies the QoS requirement. Taking the boundary Bn to be
large enough for each player n would ensure that the QoS
is achieved in the bounded region [0, Bn]. Moreover, these
assumptions also result in the uniqueness of equilibrium
point x̂ which satisfies un(x) = λn for all players n.
Trivially this point is also the minimal equilibrium point.

Interestingly, in wireless networks, the locations of the de-
vices, and therefore the channel gains, are typically modeled
as random [1]. In this case, there is no need for Assumption
1 since the randomness in the channel gain matrix G has a
similar effect on its eigenvalues.

B. Activation in Sensor Networks

Consider N sensors which communicate over a wireless
network. Each sensor in this network has the task of col-
lecting surrounding data and transmitting these observations
to a destination through the communication network, i.e.,
they only communicate with their neighbors on the network.
Hence the sensors have dual role in this setting - observing
their surroundings and also relaying the observations they re-
ceive from other sensors. Players wish to collect as much data
as possible, but they also wish to reduce energy consumption
to save their batteries. So the sensor is active at any time
only with a given probability. When activated, sensors both
make observations and relay other observations. Each sensor
wishes to find a probability of activation which gives them
the ideal tradeoff between collecting more data and reducing
energy consumption. Problems with similar formulations are
studied in [27], [28].

Let the N sensors be the N players where the probability
of player n to be active is denoted by pn. Let us define the
action taken by player n as xn = 1−pn, i.e., the probability
of being off. Clearly, xn is in [0, 1]. We define the reward
function for each player n as

un(x) = f(Pn(x))− α+ βxn.

Here Pn(x) is the probability that player n’s observation was
successfully transmitted to the destination. This probability
depends on the actions of all players as player n’s action
affects the number of observations it makes and others’
actions affect how many packets are relayed to the des-
tination. f(·) denotes the monotonically increasing ‘value’
assigned to observations, which is typically concave since
the marginal value of data decreases as the amount of data
received increases. Finally, βxn is the ‘reward’ obtained for
consuming less energy thanks to being off with probability
xn. Alternatively, this can be thought of as β − βpn which
is a shifted cost due to battery usage. The term −α < 0 is
just an offset term that ensures that un(x) = 0 if xn = 0.

The exact formula of Pn(·) can be significantly non-trivial
depending on the communication network. But it is easy to
justify that this game is a ToW game. If player m increases
their action, then it is off with a higher probability, which
decreases the times it relays observations made by player n
and hence decreases Pn(·).

Let L be the number of data packets an active sensor
transmits between two turns of our game (i.e., decision
periods). This number L can be stochastic and different
between sensors, but we assume it is constant for simplicity
of presentation. At the end of each timestep, sensors get
feedback about the number of successfully transmitted ob-
servation packets out of their L transmitted packets, which
provides them with a noisy unbiased estimator of Pn(x(t)).

The action xn cannot be thought of as ‘effort’ or the
amount of resource used (as in resource allocation games) in
this case. Increasing action xn does not necessarily increase
the reward un for the complete domain [0, 1] of xn. Clearly
Pn(x) decreases and βxn increases with increasing xn.



Hence we can expect a peak at some point if we keep x−n

fixed and change xn. The aim of the players in this game is
to collect as much data as possible but they are limited by
their energy consumption. Hence the “best” equilibrium in
this example is one where they collect the most data, which
is given by the minimal equilibrium.

In this example, the communication of the one-bit ‘out-
of-bounds’ signal can easily be done over the existing
communication network with little overhead.

VI. SIMULATIONS

In this section, we simulate the games from the previous
section. Except for single-run plots, the others are the average
over a 100 random realizations, which have been plotted
along with the standard deviation region.

For the power control game, we randomly generate a
diagonal heavy channel gain matrix G where the diagonal
elements are uniformly and independently sampled from
[0.2, 0.8] and the non-diagonal elements are uniformly and
independently sampled from [0, 0.2]. We set N0 = 0.1. In
Fig. 1a, we compare our algorithms with other algorithms
designed for the power control game with N = 100 players
and λn = 0.1 for each player. We plot the reward of the
player with the minimum reward, i.e., the reward of the most
dissatisfied player at each time. Due to the measurement
noise, we assume that the rewards observed are noisy with
additive Gaussian noise N (0, 0.1). The upper boundary Bn

can be set to be large (Bn = 1 in this case) so that it
has no effect on the problem. We use the stepsize sequence
η(t) = 1/(t + 100) for our algorithm. The dashed line
represents the QoS requirement for each player.

The algorithms by [1] (Foschini et al. in Fig. 1a) and [2]
(Zhang et al. in Fig. 1a) fail to converge in our case. While
[1] cannot handle noise, the algorithm by [2] assumes that
they have an unbiased estimator of the inverse SIR, i.e., the
inverse reward, which is not the case in our formulation. The
curve Zhang et al. (2007)++ in our plot denotes the setting
in their paper [2], i.e., where Gaussian noise is added to the
inverse SIR. As expected, our algorithms, converge to the
minimal point which satisfies the QoS requirements.

Fig. 1b plots the utilities of each player using the ToP
algorithm for a power control game with N = 4 and different
QoS requirements λ = [0.8, 1.2, 1, 0.9]T . We use the stepsize
sequence η(t) = 1/(t+10)0.9 for this example. The different
dashed lines denote the QoS requirements for each player.
We can see in the plot that the action taken by each of the
players eventually converges to a profile that satisfies the
QoS requirements for each player.

For the sensor activation game, we simulate a network
with N = 10 sensors for this game. Each sensor has a set
of multiple routes for sending packets to the destination, and
we assume that a transmission is successful if there exists a
route where all sensors are active. For each simulation, we
randomly generate an Erdos-Renyi graph with edge probabil-
ity 0.2 for the sensors. This graph dictates all possible paths
from each sensor to its destination. We choose L = 100
packets and f(p) = 0.8

√
p, α = 0.8 and β = 2.

We also studied the effects of stepsize sequence on the
resulting equilibrium in the simulations for sensor activation
(Fig. 2). Note that in the simulations for the power control
game, the actions never got stuck at the boundary and the
equilibrium is unique.

In Fig. 2a, we plot the performance of the ToP algorithm.
The first plot is for a stepsize sequence which decreases
slowly and has a higher initial value, i.e., η(t) = 1/(t+1)0.6.
In this setting, the rewards quickly increase in the beginning
but one of the players reaches the boundary, causing a
reset. This happens twice before the algorithm stabilizes and
converges to the minimal equilibrium. The second plot is for
a quickly decreasing stepsize sequence with a lower initial
value (η(t) = 1/(t+ 100)). In this case, the actions slowly
increase and directly reach the minimal equilibrium point.

The second plot (Fig. 2b) shows the total power consumed
by all sensors when they run the FDToP algorithm with
different stepsizes. Stepsizes with higher initial values start
with large oscillations but eventually, reach close to the
minimal equilibrium point faster. On the other hand, quickly
decreasing stepsizes with lower initial values are more stable
but take longer to converge. Nevertheless, for all different
stepsize sequences, the algorithm still converged to the same
equilibrium, which was the minimal equilibrium.

In the sensor activation game, it is trivial to see that there
are many more equilibrium points of our ODEs, including
many at the boundary. But in the extensive simulations we
performed, the algorithm always converged to the minimal
equilibrium point. We tried various levels of noise (with
additional additive noise), and stepsize sequences that go
down very slowly (e.g., η(t) = 1/⌈t/100⌉0.51). Even in these
conditions, we observed that both our algorithms converged
to the minimal equilibrium point, despite the initial oscilla-
tions. These empirical findings suggest that in special cases
of ToW games, the convergence properties can be stronger
than our general theoretical guarantees.

VII. CONCLUSIONS

We proposed a simple stochastic approximation algorithm
that players can use to converge into a point that satisfies
all of their QoS requirements if such a point is feasible. We
identified a class of games, called “Tug-of-War” games, and
proved that for games in this class, our simple algorithm
almost surelt converges to such a desirable point. Moreover,
the algorithm converges to the point where the actions of the
players are “minimal” with high probability, which is useful
when the action represents power or energy. We model power
control in wireless networks and sensor activation for data
collection as ToW games and simulate our algorithm in these
examples.

To make our algorithm fully distributed, we would want
to generalize our analysis to asynchronous players. Another
significant extension is to games where players take multidi-
mensional actions. Such an extension would widen the scope
of our algorithm, but it is unclear how the definition of ToW
games can be extended to multidimensional action spaces.



(a) Comparison between algorithms (b) Performance of Tug-of-Peace Algorithm

Fig. 1: Power control game with (a) N = 50, (b) N = 4 players

(a) Effect of stepsize on ToP algorithm (b) Effect of stepsize on FDToP algorithm

Fig. 2: Sensor activation game with N = 10 sensors for (a) ToP, and (b) FDToP algorithm with stepsize η(t) = 1/(t+ t0)µ
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