

Equilibrium Bandits: Learning Optimal Equilibria of Unknown Dynamics

Siddharth Chandak, Ilai Bistritz, Nicholas Bambos

chandaks, bistritz, bambos@stanford.edu

Guarantees

Theorem: Regret Bound

For any instance of equilibrium bandits, the regret achieved by UECB algorithm is bounded as:

$$\mathbb{E}[R(T)] = \mathcal{O}\left(\sum_{\substack{a \neq a^* \\ \text{Stochastic} \\ \text{Bandits}}} \frac{\log(T)}{\Delta_a} + \underbrace{\tau_c \log\left(\tau_c \log\left(\frac{1}{\Delta_a}\right)\right) + \tau_c \log(\log(T))}_{\text{Convergence Time}}\right),$$

- How should the government control a new epidemic?
- Hard to model the epidemic and population interaction
- Multiple policies:
- \rightarrow e.g., lockdown, mask enforcement, advertising for awareness
- \rightarrow Each has their own operational cost
- Care about the equilibrium infection rate of each policy:
- \rightarrow Need to enact it consecutively for a "large number of time-steps"

Equilibrium Bandits: System Evolution

- Agent takes action $a_t \in \{1, \ldots, K\}$ at each time $t = 0, 1, 2, \ldots$
- $\overrightarrow{z_t}$: System State
- \rightarrow Evolution Function: $z_{t+1} = g(z_t; a_t)$
- \rightarrow Each action *a* has their equilibrium point z_a^*
- \rightarrow Converges if action is fixed, i.e., $\lim_{t \uparrow \infty} g^{(t)}(z; a) = z_a^*$
- \rightarrow Distance from equilibrium decreases when action *a* is played, i.e.,

$$||g(z,a) - z_a^*|| \le \exp\left(-\frac{1}{\tau_c}\right) ||z - z_a^*|$$

 $\rightarrow \tau_c$: approximate convergence time to equilibrium

where Δ_a is the suboptimality gap for arm *a* defined w.r.t. equilibrium rewards.

Theorem: Lower Bound

There exist instances of equilibrium bandits where for all 'good' algorithms

$$\mathbb{E}[R(T)] = \Omega\left(\frac{\log(T)}{\Delta_a} + \tau_c \Delta_a \log\left(\frac{1}{\Delta_a}\right)\right)$$

- UECB is optimal in T, Δ_a , and optimal upto logarithmic factors in τ_c
- Lower bound obtained using an instance where arms cannot be distinguished for the first $\sim \tau_c$ steps

Numerical Experiments

Equilibrium Bandits: Rewards & Regret

- *f*(*z*_{*t*}; *a*_{*t*}): Reward Function
- Agent receives noisy rewards
- Optimal action a^* : action with maximum reward at equilibrium

 $a^* = \arg\max_a f(z_a^*, a)$

• Regret:

$$\mathbb{E}[R(T)] = \mathbb{E}\left[\sum_{t=1}^{T} (f(z_{a^*}^*; a^*) - f(z_t; a_t))\right]$$

 \rightarrow Difference w.r.t. what the optimal action achieves at equilibrium

SIS Epidemic Control

Strongly Monotone Games

- Strongly Monotone Games:
- \rightarrow Game designer tries to optimize global objective by controlling game parameters
- \rightarrow Players optimize local utility using gradient ascent
- \rightarrow On fixing parameters, players eventually converge to Nash equilibrium
- UECB achieves logarithmic regret while standard algorithms such as UCB and EXP3 achieve linear regret

Upper Equilibrium Concentration Bound (UECB)

UECB Algorithm

For epoch n = 1, 2, ...(1) Play action $a_n = \arg \max_a \text{UECB}_a$ for $\ell_n = \exp(m_a + 1)$ time-steps (2) Estimate:

$$\hat{x}_{a,n} = \frac{1}{\ell_n/2} \sum_{t=t_n+\ell_n/2}^{t_n+\ell_n} y_t$$

(3) Update UECB:

UECB Algorithm: Key Steps

• Convergence Bound: To get a bound on how well an action can perform at equilibrium \rightarrow Suppose action *a* is player consecutively ℓ times (from *t* to $t + \ell$):

$f(a; z_{t+\ell}) - Le^{-\frac{\ell}{\tau_c}} \le f(a; z_a^*) \le f(a; z_{t+\ell}) + Le^{-\frac{\ell}{\tau_c}}$

- Epochs of Increasing Length: To give *promising* actions more consecutive time-steps to converge
- \rightarrow Lengths of epochs increased as an action is chosen more times
- \rightarrow If action a has been played for m epochs, then length of $(m + 1)^{th}$ epoch is e^{m+1} time-steps
- Noise Averaging: To average-out noise while eliminating equilibrium bias
- \rightarrow If action *a* is played for ℓ consecutive steps in an epoch, take average of last $\ell/2$ observed rewards

$\mathsf{UECB}_{a,n} = \hat{x}_{a,n} + \frac{c_1}{\ell_n/2} \exp\left(-\frac{\ell_n}{2\tau_c}\right) + \sqrt{\frac{c_2\sigma^2}{\ell_n/2}} \log(2t_n^3)$

End

• Algorithm inspired by UCB

• An additional term obtained using convergence bound

Funding

• Koret Foundation grant for Smart Cities and Digital Living 2030 • 3Com Corporation Stanford Graduate Fellowship