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• How should the government control a new epidemic?
• Hard to model the epidemic and population interaction
• Multiple policies:
→ e.g., lockdown, mask enforcement, advertising for awareness
→ Each has their own operational cost

• Care about the equilibrium infection rate of each policy:
→ Need to enact it consecutively for a “large number of time-steps”

Epidemic Control

• Agent takes action at ∈ {1, . . . , K} at each time t = 0, 1, 2, . . .
• −→zt : System State
→ Evolution Function: zt+1 = g(zt; at)
→ Each action a has their equilibrium point z∗

a
→ Converges if action is fixed, i.e., limt↑∞ g(t)(z; a) = z∗

a
→ Distance from equilibrium decreases when action a is played, i.e.,

||g(z, a) − z∗
a|| ≤ exp (

− 1
τc

)
||z − z∗

a||

→ τc: approximate convergence time to equilibrium

Equilibrium Bandits: System Evolution

• f (zt; at): Reward Function
• Agent receives noisy rewards
• Optimal action a∗: action with maximum reward at equilibrium

a∗ = argmax
a

f (z∗
a, a)

• Regret:
E[R(T )] = E

 T∑
t=1(f (z∗

a∗; a∗) − f (zt; at))


→ Difference w.r.t. what the optimal action achieves at equilibrium

Equilibrium Bandits: Rewards & Regret

• Convergence Bound: To get a bound on how well an action can perform at equilibrium
→ Suppose action a is player consecutively ℓ times (from t to t + ℓ):

f (a; zt+ℓ) − Le− ℓ
τc ≤ f (a; z∗

a) ≤ f (a; zt+ℓ) + Le− ℓ
τc

• Epochs of Increasing Length: To give promising actions more consecutive time-steps toconverge
→ Lengths of epochs increased as an action is chosen more times
→ If action a has been played for m epochs, then length of (m + 1)th epoch is em+1time-steps

• Noise Averaging: To average-out noise while eliminating equilibrium bias
→ If action a is played for ℓ consecutive steps in an epoch, take average of last ℓ/2observed rewards

UECB Algorithm: Key Steps

For any instance of equilibrium bandits, the regret achieved by UECB algorithm isbounded as:
E[R(T )] = O

 ∑
a̸=a∗

log(T )∆a︸ ︷︷ ︸StochasticBandits
+ τc log (

τc log ( 1∆a

)) + τc log(log(T ))︸ ︷︷ ︸Convergence Time

 ,

where ∆a is the suboptimality gap for arm a defined w.r.t. equilibrium rewards.

Theorem: Regret Bound

There exist instances of equilibrium bandits where for all ‘good’ algorithms
E[R(T )] = Ω (log(T )∆a

+ τc∆a log ( 1∆a

))
.

Theorem: Lower Bound

• UECB is optimal in T , ∆a, and optimal upto logarithmic factors in τc
• Lower bound obtained using an instance where arms cannot be distinguished for thefirst ∼τc steps

Guarantees

SIS Epidemic Control Strongly Monotone Games
• Strongly Monotone Games:
→ Game designer tries to optimize global objective by controlling game parameters
→ Players optimize local utility using gradient ascent
→ On fixing parameters, players eventually converge to Nash equilibrium

• UECB achieves logarithmic regret while standard algorithms such as UCB and EXP3achieve linear regret

Numerical Experiments

For epoch n = 1, 2, . . .(1) Play action an = argmaxa UECBa for ℓn = exp(ma + 1) time-steps(2) Estimate:
x̂a,n = 1

ℓn/2 tn+ℓn∑
t=tn+ℓn/2 yt

(3) Update UECB:
UECBa,n = x̂a,n + c1

ℓn/2 exp (
− ℓn2τc

)
︸ ︷︷ ︸Equilibrium Bias

+ √
c2σ2
ℓn/2 log(2t3n)︸ ︷︷ ︸Noise Averaging (∼ UCB)

End

UECB Algorithm

• Algorithm inspired by UCB
• An additional term obtained using convergence bound

Upper Equilibrium Concentration Bound (UECB)
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