

Equilibrium Bandits: Learning Optimal Equilibria of Unknown Dynamics

Siddharth Chandak, Ilai Bistritz, Nicholas Bambos June 1, 2023

AAMAS 2023

- Motivation: Equilibrium Bandits
- UECB Algorithm
- Results

Motivation: Equilibrium Bandits

- How should the government control a new epidemic?
- Hard to model the epidemic and population interaction
- Multiple policies:
 - e.g., lockdown, mask enforcement, advertising for awareness
 - Each has their own operational cost
 - Affect the spread of epidemic differently
- Care about the equilibrium infection rate of each policy:
 - Need to enact it consecutively for a "large number of time-steps"

Application: Epidemic Control

- Multiple policies:
 - e.g., lockdown, mask enforcement, advertising for awareness
 - Each has their own operational cost
 - Affect the spread of epidemic differently
- Care about the equilibrium infection rate of each policy:
 - Need to enact it consecutively for a "large number of time-steps"

- Agent takes action $a_t \in \{1, \ldots, K\}$ at each time $t = 0, 1, 2, \ldots$
- $\overrightarrow{z_t}$: System State
 - Evolution Function: $z_{t+1} = g(z_t; a_t)$

- $\overrightarrow{z_t}$: System State
 - Evolution Function: $z_{t+1} = g(z_t; a_t)$
 - Each action a has their equilibrium point z_a^*
 - Converges if action is fixed, i.e., $\lim_{t\uparrow\infty}g^{(t)}(z;a)=z_a^*$

- $\overrightarrow{z_t}$: System State
 - Distance from equilibrium decreases when action a is played, i.e.,

$$||g(z,a) - z_a^*|| \le \exp\left(-\frac{1}{\tau_c}\right) ||z - z_a^*||$$

• τ_c : approximate convergence time to equilibrium

- $f(z_t; a_t)$: Reward Function
- Agent receives noisy rewards
- Optimal action a^* : action with maximum reward at equilibrium

$$a^* = \arg\max_a f(z_a^*, a)$$

• Regret:

$$\mathbb{E}[R(T)] = \mathbb{E}\left[\sum_{t=1}^{T} (f(z_{a^*}^*; a^*) - f(z_t; a_t))\right]$$
(1)

• Difference w.r.t. what the optimal action achieves at equilibrium

- $f(z_t; a_t)$: Reward Function
- Agent receives noisy rewards y_t
- Optimal action a^* : action with maximum reward at equilibrium

$$a^* = \arg\max_a f(z_a^*, a)$$

• Regret:

$$\mathbb{E}[R(T)] = \mathbb{E}\left[\sum_{t=1}^{T} (f(z_{a^*}^*; a^*) - f(z_t; a_t))\right]$$
(2)

- Difference w.r.t. what the optimal action achieves at equilibrium
- Want to incentivize choosing the optimal arm and converging quickly

- Agent: Government
- Actions: Policies
- System State (z_t) : Infection Rate in Population
- Evolution Function $(g(z_t; a_t))$: Spread of epidemic
- Reward Function $(f(z_t; a_t))$: Negative Cost
 - Cost due to infection
 - Operational cost
- Regret: How we perform as compared to the optimal policy

Upper Equilibrium Concentration Bound (UECB)

- Cannot switch action at every time-step
 - Would learn nothing about the reward at equilibrium
- Cannot wait too long
 - Can be very costly, e.g., epidemic
 - Would need to know τ_c and suboptimality gap to determine how long to wait

- Want to determine how an action will behave at equilibrium without waiting for convergence
 - Recall: Distance from equilibrium decreases when action a is played,

$$||g(z,a) - z_a^*|| \le \exp\left(-\frac{1}{\tau_c}\right) ||z - z_a^*||$$

- Approach: Can use this to get a bound on how well an action can perform at equilibrium
 - Suppose action a is player consecutively ℓ times (from t to $t + \ell$):

$$f(a; z_{t+\ell}) - Le^{-\frac{\ell}{\tau_c}} \le f(a; z_a^*) \le f(a; z_{t+\ell}) + Le^{-\frac{\ell}{\tau_c}}$$

- Need to play for a consecutive number of times
- Approach: Epoch-based system: actions are changed only at ends of epochs
- Lengths of epochs increased as an action is chosen more times
 - Intuition: Promising actions are given more time to converge
 - If action a has been played for m epochs, then length of $(m+1)^{th}$ epoch is e^{m+1} time-steps

- Receive noisy rewards: need to average to eliminate noise
- Cannot average all rewards from an epoch (or from older epochs):
 - Far from equilibrium, hence less information about reward at equilibrium
- Approach: If action a is played for ℓ consecutive steps in an epoch, take average of last $\ell/2$ observed rewards

Algorithm (UECB)

For epoch n = 1, 2, ...

(1) Play action a_n = arg max_a UECB_a for l_n = exp(m_a + 1) time-steps
(2) Estimate:

$$\hat{x}_{a,n} = \frac{1}{\ell_n/2} \sum_{t=t_n+\ell_n/2}^{t_n+\ell_n} y_t$$

(3) Update UECB:

$$\mathsf{UECB}_{a,n} = \hat{x}_{a,n} + \frac{c_1}{\ell_n/2} \exp\left(-\frac{\ell_n}{2\tau_c}\right) + \sqrt{\frac{c_2\sigma^2}{\ell_n/2}\log(2t_n^3)}$$

End

Algorithm (UECB)

For epoch $n = 1, 2, \ldots$

- (1) Play action $a_n = \arg \max_a \mathsf{UECB}_a$ for $\ell_n = \exp(m_a + 1)$ time-steps
- (2) Estimate:

$$\hat{x}_{a,n} = \frac{1}{\ell_n/2} \sum_{t=t_n+\ell_n/2}^{t_n+\ell_n} y_t$$

(3) Update UECB:

$$\mathsf{UECB}_{a,n} = \hat{x}_{a,n} + \underbrace{\frac{c_1}{\ell_n/2} \exp\left(-\frac{\ell_n}{2\tau_c}\right)}_{\mathsf{Equilibrium Bias}} + \underbrace{\sqrt{\frac{c_2\sigma^2}{\ell_n/2} \log(2t_n^3)}}_{\mathsf{Noise Averaging}} (\sim \mathsf{UCB})$$

End

Results

Theorem

For any instance of equilibrium bandits, the regret achieved by UECB algorithm is bounded as:

$$\mathbb{E}[R(T)] = \mathcal{O}\left(\sum_{a \neq a^*} \frac{\log(T)}{\Delta_a} + \tau_c \log\left(\tau_c \log\left(\frac{1}{\Delta_a}\right)\right) + \tau_c \log\left(\log(T)\right)\right)$$

where Δ_a is the suboptimality gap for arm a defined w.r.t. equilibrium rewards.

Theorem

For any instance of equilibrium bandits, the regret achieved by UECB algorithm is bounded as:

$$\mathbb{E}[R(T)] = \mathcal{O}\left(\sum_{\substack{a \neq a^* \\ \text{Stochastic} \\ \text{Bandits}}} \underbrace{\frac{\log(T)}{\Delta_a}}_{\text{Stochastic}} + \underbrace{\tau_c \log\left(\tau_c \log\left(\frac{1}{\Delta_a}\right)\right) + \tau_c \log(\log(T))}_{\text{Convergence Time}}\right)$$

where Δ_a is the suboptimality gap for arm a defined w.r.t. equilibrium rewards.

• τ_c : Approximate convergence time to equilibrium

Theorem

There exist instances of equilibrium bandits, where for all 'good' algorithms

$$\mathbb{E}[R(T)] = \Omega\left(\frac{\log(T)}{\Delta_a} + \tau_c \Delta_a \log\left(\frac{1}{\Delta_a}\right)\right).$$

- + UECB is optimal in T , $\Delta_a,$ and optimal upto logarithmic factors in τ_c
- Lower bound obtained using an instance where arms cannot be distinguished for the first ${\sim}\tau_c$ steps

Numerical Experiments

(a) SIS Epidemic Control

(b) Strongly Monotone Games

- Strongly Monotone Games:
 - Game designer tries to optimize global objective by controlling game parameters
 - Players optimize local utility using gradient ascent
 - Given fixed parameters, players slowly converge to Nash equilibrium
- UECB obtains logarithmic regret while standard algorithms such as UCB and EXP3 achieve linear regret

- Equilibrium Bandits: A new bandit problem
 - Can be used to make optimal decisions for complex systems which slowly evolve and converge to some equilibrium
 - Examples include epidemic control, game control, congestion control
- UECB Algorithm:
 - Inspiration from UCB
 - Concept of Convergence Bounds

Thank You!