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Motivation: Equilibrium Bandits



Application: Epidemic Control

• How should the government control a new epidemic?

• Hard to model the epidemic and population interaction

• Multiple policies:

• e.g., lockdown, mask enforcement, advertising for awareness

• Each has their own operational cost

• Affect the spread of epidemic differently

• Care about the equilibrium infection rate of each policy:

• Need to enact it consecutively for a “large number of time-steps”
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Equilibrium Bandits: Problem Formulation

• Agent takes action at ∈ {1, . . . ,K} at each time t = 0, 1, 2, . . .

• −→zt : System State

• Evolution Function: zt+1 = g(zt; at)
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Equilibrium Bandits: Problem Formulation

• −→zt : System State

• Evolution Function: zt+1 = g(zt; at)

• Each action a has their equilibrium point z∗a
• Converges if action is fixed, i.e., limt↑∞ g

(t)(z; a) = z∗a
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Equilibrium Bandits: Problem Formulation

• −→zt : System State

• Distance from equilibrium decreases when action a is played, i.e.,

‖g(z, a)− z∗a‖ ≤ exp

(
− 1

τc

)
‖z − z∗a‖

• τc: approximate convergence time to equilibrium
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Equilibrium Bandits: Problem Formulation

• f(zt; at): Reward Function

• Agent receives noisy rewards

• Optimal action a∗: action with maximum reward at equilibrium

a∗ = arg max
a

f(z∗a, a)

• Regret:

E[R(T )] = E

[
T∑

t=1

(f(z∗a∗ ; a∗)− f(zt; at))

]
(1)

• Difference w.r.t. what the optimal action achieves at equilibrium
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Equilibrium Bandits: Problem Formulation

• f(zt; at): Reward Function

• Agent receives noisy rewards yt

• Optimal action a∗: action with maximum reward at equilibrium

a∗ = arg max
a

f(z∗a, a)

• Regret:

E[R(T )] = E

[
T∑

t=1

(f(z∗a∗ ; a∗)− f(zt; at))

]
(2)

• Difference w.r.t. what the optimal action achieves at equilibrium

• Want to incentivize choosing the optimal arm and converging quickly
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Application: Epidemic Control

• Agent: Government

• Actions: Policies

• System State (zt): Infection Rate in Population

• Evolution Function (g(zt; at)): Spread of epidemic

• Reward Function (f(zt; at)): Negative Cost

• Cost due to infection

• Operational cost

• Regret: How we perform as compared to the optimal policy
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Upper Equilibrium Concentration

Bound (UECB)



Challenges

• Cannot switch action at every time-step

• Would learn nothing about the reward at equilibrium

• Cannot wait too long

• Can be very costly, e.g., epidemic

• Would need to know τc and suboptimality gap to determine how

long to wait
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UECB: Convergence Bounds

• Want to determine how an action will behave at equilibrium without

waiting for convergence

• Recall: Distance from equilibrium decreases when action a is played,

‖g(z, a)− z∗a‖ ≤ exp

(
− 1

τc

)
‖z − z∗a‖

• Approach: Can use this to get a bound on how well an action can

perform at equilibrium

• Suppose action a is player consecutively ` times (from t to t+ `):

f(a; zt+`)− Le−
`
τc ≤ f(a; z∗a) ≤ f(a; zt+`) + Le

− `
τc
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UECB: Epochs of Increasing Length

• Need to play for a consecutive number of times

• Approach: Epoch-based system: actions are changed only at ends

of epochs

• Lengths of epochs increased as an action is chosen more times

• Intuition: Promising actions are given more time to converge

• If action a has been played for m epochs, then length of (m+ 1)th

epoch is em+1 time-steps
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UECB: Noise Averaging

• Receive noisy rewards: need to average to eliminate noise

• Cannot average all rewards from an epoch (or from older epochs):

• Far from equilibrium, hence less information about reward at

equilibrium

• Approach: If action a is played for ` consecutive steps in an epoch,

take average of last `/2 observed rewards
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UECB: Bring it Together

Algorithm (UECB)

For epoch n = 1, 2, . . .

(1) Play action an = arg maxa UECBa for `n = exp(ma + 1) time-steps

(2) Estimate:

x̂a,n =
1

`n/2

tn+`n∑
t=tn+`n/2

yt

(3) Update UECB:

UECBa,n = x̂a,n +
c1
`n/2

exp

(
− `n

2τc

)
+

√
c2σ2

`n/2
log(2t3n)

End
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UECB: Bring it Together

Algorithm (UECB)

For epoch n = 1, 2, . . .

(1) Play action an = arg maxa UECBa for `n = exp(ma + 1) time-steps

(2) Estimate:

x̂a,n =
1

`n/2

tn+`n∑
t=tn+`n/2

yt

(3) Update UECB:

UECBa,n = x̂a,n +
c1
`n/2

exp

(
− `n

2τc

)
︸ ︷︷ ︸

Equilibrium Bias

+

√
c2σ2

`n/2
log(2t3n)︸ ︷︷ ︸

Noise Averaging (∼ UCB)

End
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Results



Guarantees

Theorem

For any instance of equilibrium bandits, the regret achieved by UECB

algorithm is bounded as:

E[R(T )] = O

∑
a 6=a∗

log(T )

∆a
+ τc log

(
τc log

(
1

∆a

))
+ τc log (log(T ))


where ∆a is the suboptimality gap for arm a defined w.r.t. equilibrium

rewards.
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Guarantees: What does each term mean?

Theorem

For any instance of equilibrium bandits, the regret achieved by UECB

algorithm is bounded as:

E[R(T )] = O


∑
a6=a∗

log(T )

∆a︸ ︷︷ ︸
Stochastic
Bandits

+ τc log

(
τc log

(
1

∆a

))
+ τc log(log(T ))︸ ︷︷ ︸

Convergence Time


where ∆a is the suboptimality gap for arm a defined w.r.t. equilibrium

rewards.

• τc: Approximate convergence time to equilibrium
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Lower Bound

Theorem

There exist instances of equilibrium bandits, where for all ‘good’

algorithms

E[R(T )] = Ω

(
log(T )

∆a
+ τc∆a log

(
1

∆a

))
.

• UECB is optimal in T , ∆a, and optimal upto logarithmic factors in

τc

• Lower bound obtained using an instance where arms cannot be

distinguished for the first ∼τc steps
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Numerical Experiments

(a) SIS Epidemic Control (b) Strongly Monotone Games

• Strongly Monotone Games:

• Game designer tries to optimize global objective by controlling game

parameters

• Players optimize local utility using gradient ascent

• Given fixed parameters, players slowly converge to Nash equilibrium

• UECB obtains logarithmic regret while standard algorithms such as

UCB and EXP3 achieve linear regret
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Summary

• Equilibrium Bandits: A new bandit problem

• Can be used to make optimal decisions for complex systems which

slowly evolve and converge to some equilibrium

• Examples include epidemic control, game control, congestion control

• UECB Algorithm:

• Inspiration from UCB

• Concept of Convergence Bounds

21



Thank You!
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