Prospect Theoretic Q-Learning

Siddharth Chandak, 17D070019 Guide - Prof. Vivek S. Borkar 17th December 2020

Electrical Engineering IIT Bombay

- Introduction
- Modified Q-Learning Scheme
- Convergence
- Equilibrium Points
- Numerical Experiments
- Alternate Formulation

Introduction

- Reinforcement Learning: Actions taken by a rational agent in order to maximize its expected rewards
- Typically modeled using Markov Decision Processes
- Useful and well-developed model for human decision making
- Economics, Control theory, Robotics and Games

- $\bullet\,$ Consider finite state space S and finite action space A
- At each time step n, agent chooses action $Z_n \in A$ when it is in state $X_n \in S$
- Markov control policy:

$$P(X_{n+1} = j | X_m, Z_m, m \le n) = p(j | X_n, Z_n) \ \forall n,$$

Q-Learning

- Q-learning: A reinforcement learning algorithm for MDPs
- Q-learning iteration:

$$Q_{n+1}(i, u) = Q_n(i, u) + a(n)I\{X_n = i, Z_n = u\} \\ \times \left(k(i, u) + \alpha \max_a Q_n(X_{n+1}, a) - Q_n(i, u)\right)$$

- α : Discount factor for future rewards
- a(n): Learning rate
- k(i, u): Current reward
- Agent updates Q(i, u) based on next state X_{n+1} and action a which is optimal for current estimate of Q-value

• Under appropriate conditions¹, $Q_n \rightarrow Q^*$ where Q^* is a solution of

$$Q(i, u) = k(i, u) + \alpha \sum_{j} p(j|i, u) \max_{a} Q(j, a),$$

- + Q^{\ast} is the expected discounted reward of executing action \boldsymbol{u} at state \boldsymbol{i}
- Minimizer of $Q^*(i,:)$ yields an optimal choice of control in state i

¹Stochastic approximation: a dynamical systems view-point by Vivek S. Borkar

- Reinforcement Learning: Actions taken by a <u>rational</u> agent in order to maximize its expected rewards
- When faced with risk, humans don't always behave rationally
- Reinforcement Learning has been widely studied under risk-neutral and risk-averse policies
- But according to <u>Prospect Theory</u>, humans perceive risk differently in different scenarios

- Aims to model actual behavior of people
- A valuation map over gains and losses defined with respect to a reference point
- s-shaped valuation map:
 - Marginal impact of change in value diminishes with distance from the reference point
 - Concavity for gains contributes to risk aversion for gains
 - Convexity for losses contributes to risk seeking behavior

Example

Figure 1

- We study classical Q-learning from a prospect theoretic viewpoint
- Future returns are distorted using a s-shaped valuation map
- Previous works² applying such prospect theoretic valuation maps worked with certain restricting assumptions
 - Doesn't allow steep valuation maps and high discount factors for future rewards

²Shen et al., Risk-sensitive reinforcement learning, 2014

Modified Q-Learning Scheme

Q-Learning Iteration

• Prospect theoretic Q-learning iteration:

$$Q_{n+1}(i,v) = Q_n(i,v) + a(n)I\{X_n = i, Z_n = v\} \Big(k(i,v) + \alpha u(Q_n(X_{n+1}, Z_{n+1}) - \xi_n(X_{n+1}, Z_{n+1})) - Q_n(i,v)\Big)$$

- $\{X_n\}$: Controlled Markov chain on a finite state space S, |S| = s
- $\{Z_n\}$: Control Process in a finite action space A, |A| = r
- $\alpha \in (0, 1)$: Discount factor
- $a(n) \in [0, 1]$: Positive learning rate
- k > 0: The running reward
- $u(\cdot)$: s-shaped strictly increasing continuously differentiable map

Parameters (cont.)

- Noise:
 - $\{\xi_n = [[\xi_n(i, v)]]\}$: \mathcal{R}^{sr} -valued zero mean i.i.d. noise
 - Each $\xi_n(i, v)$ is distributed according to a continuously differentiable density $\varphi(\cdot)$ concentrated on a finite interval [-c, c]
 - $c \in [0, k_{min}]$ where $k_{min} = \min_{i,v} k(i, v)$
- Choice of Z_{n+1} :
 - Need ϵ -randomization to ensure adequate exploration
 - Use epsilon-greedy policy:

$$Z_{n+1} = \begin{cases} w_{n+1}^* & \text{w.p. } (1-\epsilon) \\ w \neq w_{n+1}^* & \text{w.p. } \frac{\epsilon}{r-1} \text{ each} \end{cases}$$

•
$$w_{n+1}^* = \arg \max_w (Q_n(X_{n+1}, w) - \xi_n(X_{n+1}, w))$$

- Define $K := \frac{k_{max}}{1-\alpha}$ where $k_{max} = \max_{i,v} k(i,v)$
- $u: [0, K+c] \mapsto [0, K].$

Boundedness

Lemma 2.1

When initiated in the set $S := [k_{min}, K]^{sr}$, the Q-learning iteration stays in the set S.

Proof (Outline):

- Note that $Q_{n+1}(i, v)$ can be written as the convex combination of $Q_n(i, v)$ and Uwhere $U := k(i, v) + \alpha u(Q_n(X_{n+1}, Z_{n+1} - \xi_n(X_{n+1}, Z_{n+1}))$ $Q_{n+1}(i, v) = (1 - a(n)I\{X_n = i, Z_n = v\})Q_n(i, v)$ $+ a(n)I\{X_n = i, Z_n = v\}U$
- U can be bounded as follows:

$$k_{min} \le U \le k_{max} + \alpha u(K+c)$$

= $k_{max} + \alpha K = K$

• $Q_n \in \mathcal{S} \Rightarrow Q_{n+1} \in \mathcal{S}$

Convergence

Limiting O.D.E.

• Need the following restriction on a(n):

$$\sum a(n) = \infty, \sum a(n)^2 < \infty$$

• Since $u(\cdot)$ is Lipschitz continuous and $\sup_n \|Q_n\|_{\infty} \leq K < \infty$, the Q-learning iteration converges to the following o.d.e.:

$$\begin{aligned} \frac{d}{dt}q_t(i,v) &= h_{i,v}(q_t) \\ &= F_{i,v}(q_t) - q_t(i,v) \\ &:= k(i,v) + \alpha \int_{\mathcal{R}^{sr}} \left(\sum_j p(j|i,v) \Big((1-\epsilon) \max_w \big(u(q_t(j,w) - y_{j,w}) \big) \right) \\ &+ \frac{\epsilon}{r-1} \sum_{w \neq w_{q_t,y,j}^*} \big(u(q_t(j,w) - y_{j,w}) \big) \Big) \prod_{j,w} \varphi(y_{j,w}) dy_{j,w} - q_t(i,v). \end{aligned}$$

• where $w_{q_t,y,j}^* = \arg \max_w (q_t(j,w) - y_{j,w}).$

Properties of O.D.E.

- h and F are continuously differentiable
- Jacobian matrix of h (resp., F) at q is J(q) I (resp., J(q)):

$$J(q)_{(i,v),(j,w)} = p(j|i,v)\alpha$$

$$\times \int \left[\left((1-\epsilon)u'(q(j,w) - y_{j,w}) \mathbb{1}_{q,j,w} + \frac{\epsilon}{r-1}u'(q(j,w) - y_{j,w}) (1-\mathbb{1}_{q,j,w}) \right) \times \prod_{w} \varphi(y_{j,w}) dy_{j,w} \right]$$

• where $\mathbbm{1}_{q,j,w}=1$ if $q(j,w)-y_{j,w}>q(j,w')-y_{j,w'} \ \forall \ w'\neq w$ and 0 otherwise

Definition 3.1

(Cooperative o.d.e) An o.d.e. of the form $\dot{x}=h(x(t))$ is a cooperative o.d.e. if the Jacobian matrix for h is irreducible and

$$\frac{\partial h_i}{\partial x_j} \ge 0, \ j \neq i.$$

Cooperative O.D.E.

Lemma 3.1

When the controlled Markov chain is irreducible, J(q) (the Jacobian of *F*) is a non-negative irreducible matrix and the limiting o.d.e. is a cooperative o.d.e.

Proof (Outline):

- u' > 0 implies that J(q) is a non-negative matrix
- $J(q) = P \times J_1(q)$
 - where $P_{(i,v),(j,w)} = p(j|i,v)$
 - and $J_1(q)$ is a positive diagonal matrix with $J_1(q)_{(j,w),(j,w)}$ being α times the integral in the Jacobian
- Since the Markov chain is irreducible, the matrix P is irreducible and hence, the matrix J(q) will be irreducible

Boundedness

Lemma 3.2

When initiated in the set $\mathcal{S}:=[k_{min},K]^{sr}$, the limiting o.d.e. stays in the set $\mathcal{S}.$

Proof (Outline):

• The derivative of $q_t(i, v)$ can be bounded using:

$$k_{min} - q_t(i, v) \le \frac{d}{dt} q_t(i, v) \le k_{max} + \alpha u(K + c) - q_t(i, v)$$

• Discretization:

 $a_n k_{min} + (1 - a_n)q_n(i, v) \le q_{n+1}(i, v) \le a_n K + (1 - a_n)q_n(i, v)$

• If initiated in the set $\mathcal{S}:=[k_{min},K]^{sr}$, q_n (and by its limit, the o.d.e.) stays in the set \mathcal{S}

Monotone Dynamical Systems

- The Markov chain is irreducible and the iteration is initiated in the set S.
- The o.d.e. is cooperative (Lemma 3.1) and it stays within the set ${\cal S}$ (Lemma 3.2)

Theorem 3.1

For initial conditions in an open dense set, the solutions of (1) converge to an equilibirium. 3

- The same is true for the iterates of the discrete map $\Phi: S \mapsto S$ which maps q_0 to q_1
- Since the o.d.e. is cooperative, this map is monotone
- Also, order compact (maps each order interval to a bounded set)

³Hirsch, Smith. Competitive and cooperative systems: A mini-review, 2003

Theorem 3.2

There exist maximal and minimal equilibria q^*, q_* resp., such that any other equilibrium \hat{q} satisfies $q_* \leq \hat{q} \leq q^*$ componentwise.⁴

- $q_0 \ge q^* \Longrightarrow q_t \to q^*$ and likewise, $q_0 \le q_* \Longrightarrow q_t \to q_*$
- If $q^* > q_*, q_* \le q_0 \le q^* \Longrightarrow q_* \le q_t \le q^* \ \forall \ t \ge 0$ by monotonicity

⁴Hirsch, Smith. Monotone maps: a review, 2005

Theorem 3.3

At least one of the following holds: 5

- 1. \exists a third equilibrium $\hat{q}, q_* < \hat{q}, < q^*$,
- 2. \exists a trajectory q_t of (1) such that $q_t \uparrow q^*$ as $t \uparrow \infty$ and $q_t \downarrow q_*$ as $t \downarrow -\infty$,
- 3. \exists a trajectory q_t of (1) such that $q_t \downarrow q_*$ as $t \uparrow \infty$ and $q_t \uparrow q^*$ as $t \downarrow -\infty$.

Corollary 3.3.1

For stable q_* and q^* , there is at least one more equilibrium \hat{q} such that $q_* < \hat{q} < q^*$.

⁵Hirsch, Smith. Monotone maps: a review, 2005

Equilibrium Points

• The stability of the equilibria of the Q-learning scheme, which are the same as equilibria of the differential equation can be analyzed by looking at the eigenvalues of its Jacobian matrix J(q) - I evaluated at the equilibrium

Theorem 4.1

(Perron-Frobenius Theorem) Let A be a square non-negative irreducible matrix. Then

- 1. A has a real positive eigenvalue λ_A and λ_A is strictly greater than the absolute value of any other eigenvalue of A.
- 2. $r \leq \lambda_A \leq R$ where $r = \min_i r_i$ and $R = \max_i r_i$ and r_i denotes the sum of the elements of row i of A.

- $\Gamma(q)_{i,v}$: Sum of the $(i,v)^{\mathrm{th}}$ row of J(q)
- $\Gamma(q)^* = \max_{i,v} \Gamma(q)_{i,v}$ and similarly $\Gamma(q)_* = \min_{i,v} \Gamma(q)_{i,v}$
- Let λ^* be the Frobenius eigenvalue of J(q), then $\Gamma(q)_* \leq \lambda^* \leq \Gamma(q)^*$
- For any eigenvalue λ of $J(q),\,\lambda-1$ is an eigenvalue of the Jacobian J(q)-I
- Real part of all eigenvalues of J(q)-I are less than λ^*-1

- $u(\cdot)$ is a s-shaped function
- + $u'(x) < 1 < \frac{1}{\alpha}$ for low and high values of x and can exceed $\frac{1}{\alpha}$ in the mid-range
- If $u'(x) < \frac{1}{\alpha} \forall x \in [0, K + c]$, then we can use the results by Shen et al., which show that there will exist only one equilibrium point in the set and will be stable
- We consider the case where u'(x) exceeds $\frac{1}{\alpha}$ in the middle region
- Define points a, b in [0, K] as the largest and smallest points in [0, K] such that $u'(x) < \frac{1}{\alpha} \forall x \in [0, a) \cup (b, K + c]$

Example

Figure 2: Examples of s-shaped valuation maps: (a) shows the case where $u'(x) < \frac{1}{\alpha} \forall x \in [0, K + c]$ and (b) depicts a and b in a case where u'(x) exceeds $\frac{1}{\alpha}$ in the middle region

Stable Regions

Theorem 4.2

There can be at most one equilibrium point in the set $(b + c, K]^{sr}$ and if such an equilibrium point exists, it will be a stable equilibrium and the maximal equilibrium point. Similarly, there can be at most one equilibrium point in the set $[k_{min}, a - c)^{sr}$ and if such an equilibrium point exists, it will be a stable equilibrium and the minimal equilibrium point.

Proof (Outline):

- Stability:
 - For any point in these sets, sum of elements in each row is less than 1
 - Hence, $\lambda^* < 1$ and hence, real part of all eigenvalues of the Jacobian J(q) I are negative
 - Any equilibrium point lying in this region will be stable.

Proof (cont.):

- Suppose that there are two equilibria q_1, q_2 in $(b + c, K]^{sr}$
- They can be ordered or unordered
- First consider the case where they are ordered and $q_1 < q_2$:
 - There exists another equilibrium point between any two stable equilibria so ∃ q₃, another equilibrium point such that q₁ < q₃ < q₂ (Corollary 3.3.1)
 - q₃ will also be a stable equilibrium and hence there will be more stable equilibrium points between q₁, q₃, and between q₃, q₂
 - Repeated application of this argument implies that we will have a curve of non-isolated equilibria
 - Real part of all eigenvalues of the Jacobian J(q) I are negative in this region implying all equilibria are isolated giving us a contradiction

Proof (cont.):

- Now consider the case where they are unordered:
 - There exists q^* such that all equilibrium points q satisfy $q \leq q^*$ (Theorem 3.2)
 - Since, no ordering exists between q_1 and q_2 , they can't be equal to q^*
 - So, q₁ < q^{*} where both q₁ and q^{*} lie in this region. But we have shown earlier that there cannot exist ordered equilibria in the region.

We subsequently refer to the sets $[k_{min}, a - c)^{sr}$ and $(b + c, K]^{sr}$ as the **lower** and **upper stable regions** respectively.

Additional Results

• Let points d, e in [0, K] be the smallest and largest points in [0, K] such that $u'(x) > \frac{1}{\alpha} \forall x \in (d, e)$.

Theorem 4.3

Any equilibrium point in the region $(d + c, e - c)^{sr}$ is an unstable equilibrium point.

Proof (Outline):

- $\bullet \ \lambda^* > 1$
- At least one eigenvalue has a poisitive real part and hence, any equilibrium point in this region will be unstable

Theorem 4.4

If all equilibrium points are hyperbolic and u(x) is convex and concave in the regions $x < m_1$ and $x > m_1$ respectively, then there can exist at most one stable equilibrium point in the region $[k_{min}, m_1 - c)^{sr}$. Similarly in the region $(m_1 + c, K]^{sr}$, there can exist at most one stable equilibrium. If these exist then they will be the minimal and maximal equilibrium points respectively.

- This theorem can also be applied where the valuation map is a traditional utility function
- In our case, there can exist many other stable equilibrium points with some components below and some above m_1

Numerical Experiments

Parameters

•
$$u(\cdot)$$
:
$$u(x) = \frac{L}{1 + e^{-\gamma(x-x_0)}}$$

- State and Action Space: Values of \boldsymbol{s} and \boldsymbol{r} ranged from 2 to 100
- a(n) :

$$a(n) = \frac{1}{\lceil \frac{n}{100}\rceil}$$

- k :Randomly generated in a given range set by fixing $k_{min} \ \& \ k_{max}$
- Noise: Cosine distribution with $c\approx 0.01$
- α : Varied from 0.01 to 0.99
- Transition matrix: Randomly generated
- $\epsilon = 0.05$

- Q-learning iteration and the o.d.e. converged to an equilibrium point and to the same point when initiated at the same point
- Values of s and r (size of state and action space), a(n) and ϵ have an impact on the rate of convergence but do not observably affect the equilibrium points
- Plots of Bellman error $(|Q_{n+1}(X_n, Z_n) Q_n(X_n, Z_n)|)$ on next slide

Convergence Plots: Bellman Error

Figure 3: Convergence plots: (a) shows the Bellman error plot for modified Q-learning scheme and (b) shows the moving average of the same over 1000 iterations

- As expected, when either α is too small or the function $u(\cdot)$ rises very gradually (i.e. $u'(x) < \frac{1}{\alpha}$ in the whole region), then there exists only one equilibrium point
- For very steep $u(\cdot)$, the iteration usually converges to one of the two equilibria, one each in the upper and lower zones, depending on the initiation

Observations

Figure 4: Only one equilibrium point exists in the case of (a), while we observe two equilibrium points for (b), one each in the upper and lower stable regions

Third Equilibrium Point

- In our initial experiments, we noticed that the iteration converged either to the maximal or to the minimal equilibrium point only
- To confirm the possibility of existence of a third equilibrium point:
 - Manually constructed and computed the equilibrium points for a small system (s = 4, r = 2)
 - Assigned the value 2 to all rewards (i.e., $k(i,u)=2, \forall i,u)$ for simplicity
 - The two actions were kept identical (i.e. $p(j|i, u) = p(j|i, v), \forall i, j$ where u, v are the two actions for state i)

Figure 5

- Observations for our constructed system:
 - Observed that there are 4 stable equilibrium points
 - Iteration converges to these additional equilibrium points when initiated in close vicinity to them
- Apart from this above constructed case, we never observed the Q-learning iteration to converge to these middle stable equilibrium points
- While 3 or more stable equilibria can exist for many systems, convergence to these points seems very infrequent

Alternate Formulation

- In our original formulation, only the future returns are distorted using the prospect theoretic valuation map
- Now, the s-shaped curve $u(\cdot)$ is applied to the total returns i.e., both the current rewards and the future returns are distorted
- Q-learning iteration:

$$Q_{n+1}(i,v) = Q_n(i,v) + a(n)I\{X_n = i, Z_n = v\} \left(u \Big(k(i,v) + \alpha(Q_n(X_{n+1}, Z_{n+1}) - \xi_n(X_{n+1}, Z_{n+1})) \Big) - Q_n(i,v) \right)$$

•
$$u: [0, K + \alpha c] \mapsto [0, K]$$

• When the Markov chain is irreducible and the iteration is initiated in $S_1 := [0, K]^{sr}$, this formulation of Q-learning also converges

• Upper stable region: $(b' + c, K]^{sr}$ where $b' = \frac{b - k_{min}}{\alpha}$. Exists if the following holds:

$$b' + c < K \Leftrightarrow \frac{b - k_{min}}{\alpha} + c < K \Leftrightarrow b < k_{min} + \alpha(K - c).$$

• Lower stable region: $[0, a' - c)^{sr}$ where $a' = \frac{a - k_{max}}{\alpha}$. Exists if the following holds:

$$a'-c > 0 \Leftrightarrow \frac{a-k_{max}}{\alpha} - c > 0 \Leftrightarrow a > k_{max} + \alpha c.$$

• They are more likely to exist for high values of α

- Converges and exhibits trends similar to the original scheme
- An important difference:
 - Maximal equilibrium point of the alternate formulation is higher than the maximal equilibrium for the original formulation
 - Similarly, minimal equilibrium point of the alternate formulation is lower than the minimal equilibrium for the original formulation

Thank You!

Additional Results (if time permits)

•
$$u_1(x) := k_{min} + \alpha u(x-c)$$

Theorem 7.1

If $u_1(b+c) \ge b+c$, then there exists a stable maximal equilibrium point in the region $[b+c, K]^{sr}$ and any iteration initiated in this set will converge to this equilibrium point.

Theorem 7.2

If $u_1(a+c) > a+c$, then there exists only one equilibrium point in the set $[k_{min}, K]^{sr}$ and it will lie in the region $(b+c, K]^{sr}$.

Existence of Equilibrium in Stable Regions

Figure 6: Theorem 7.1 only gives a sufficient condition: An equilibrium point exists in the upper stable region both (a) and (b)

•
$$u_2(x) := k_{max} + \alpha u(x+c)$$

Theorem 7.3

If $u_2(a-c) \leq a-c$, then there exists a stable maximal equilibrium point in the region $[k_{min}, a-c]^{sr}$ and any iteration initiated in this set will converge to this equilibrium point.