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Introduction



Reinforcement Learning

• Reinforcement Learning: Actions taken by a rational agent in order

to maximize its expected rewards

• Typically modeled using Markov Decision Processes

• Useful and well-developed model for human decision making

• Economics, Control theory, Robotics and Games
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Markov Decision Processes

• Consider finite state space S and finite action space A

• At each time step n, agent chooses action Zn ∈ A when it is in

state Xn ∈ S
• Markov control policy:

P (Xn+1 = j|Xm, Zm,m ≤ n) = p(j|Xn, Zn) ∀n,
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Q-Learning

• Q-learning: A reinforcement learning algorithm for MDPs

• Q-learning iteration:

Qn+1(i, u) = Qn(i, u) + a(n)I{Xn = i, Zn = u}

×
(
k(i, u) + αmax

a
Qn(Xn+1, a)−Qn(i, u)

)
• α: Discount factor for future rewards

• a(n): Learning rate

• k(i, u): Current reward

• Agent updates Q(i, u) based on next state Xn+1 and action a which

is optimal for current estimate of Q-value
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Convergence of Q-Learning Scheme

• Under appropriate conditions1, Qn → Q∗ where Q∗ is a solution of

Q(i, u) = k(i, u) + α
∑
j

p(j|i, u) max
a

Q(j, a),

• Q∗ is the expected discounted reward of executing action u at state i

• Minimizer of Q∗(i, :) yields an optimal choice of control in state i

1Stochastic approximation: a dynamical systems view-point by Vivek S. Borkar
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Risk and Prospect Theory

• Reinforcement Learning: Actions taken by a rational agent in order

to maximize its expected rewards

• When faced with risk, humans don’t always behave rationally

• Reinforcement Learning has been widely studied under risk-neutral

and risk-averse policies

• But according to Prospect Theory, humans perceive risk differently

in different scenarios
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Prospect Theory

• Aims to model actual behavior of people

• A valuation map over gains and losses defined with respect to a

reference point

• s-shaped valuation map:

• Marginal impact of change in value diminishes with distance from

the reference point

• Concavity for gains contributes to risk aversion for gains

• Convexity for losses contributes to risk seeking behavior
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Example

(a) Risk-averse utility function (b) Prospect theoretic valuation map

Figure 1
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Motivation

• We study classical Q-learning from a prospect theoretic viewpoint

• Future returns are distorted using a s-shaped valuation map

• Previous works2 applying such prospect theoretic valuation maps

worked with certain restricting assumptions

• Doesn’t allow steep valuation maps and high discount factors for

future rewards

2Shen et al., Risk-sensitive reinforcement learning, 2014
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Modified Q-Learning Scheme



Q-Learning Iteration

• Prospect theoretic Q-learning iteration:

Qn+1(i, v) = Qn(i, v) + a(n)I{Xn = i, Zn = v}
(
k(i, v) +

αu(Qn(Xn+1, Zn+1)− ξn(Xn+1, Zn+1))−Qn(i, v)
)

• {Xn}: Controlled Markov chain on a finite state space S, |S| = s

• {Zn}: Control Process in a finite action space A, |A| = r

• α ∈ (0, 1): Discount factor

• a(n) ∈ [0, 1]: Positive learning rate

• k > 0: The running reward

• u(·): s-shaped strictly increasing continuously differentiable map
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Parameters (cont.)

• Noise:

• {ξn = [[ξn(i, v)]]}: Rsr-valued zero mean i.i.d. noise

• Each ξn(i, v) is distributed according to a continuously differentiable

density ϕ(·) concentrated on a finite interval [−c, c]
• c ∈ [0, kmin] where kmin = mini,v k(i, v)

• Choice of Zn+1:

• Need ε-randomization to ensure adequate exploration

• Use epsilon-greedy policy:

Zn+1 =

w∗n+1 w.p. (1− ε)
w 6= w∗n+1 w.p. ε

r−1
each

• w∗n+1 = argmaxw(Qn(Xn+1, w)− ξn(Xn+1, w))

• Define K := kmax

1−α where kmax = maxi,v k(i, v)

• u : [0,K + c] 7→ [0,K].
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Boundedness

Lemma 2.1

When initiated in the set S := [kmin,K]sr, the Q-learning iteration

stays in the set S.

Proof (Outline):

• Note that Qn+1(i, v) can be written as the convex combination of

Qn(i, v) and U

where U := k(i, v) + αu(Qn(Xn+1, Zn+1 − ξn(Xn+1, Zn+1))

Qn+1(i, v) =
(

1− a(n)I{Xn = i, Zn = v}
)
Qn(i, v)

+ a(n)I{Xn = i, Zn = v}U

• U can be bounded as follows:

kmin ≤ U ≤ kmax + αu(K + c)

= kmax + αK = K

• Qn ∈ S ⇒ Qn+1 ∈ S

�
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Convergence



Limiting O.D.E.

• Need the following restriction on a(n):∑
a(n) =∞,

∑
a(n)2 <∞

• Since u(·) is Lipschitz continuous and supn ‖Qn‖∞ ≤ K <∞, the

Q-learning iteration converges to the following o.d.e.:

d

dt
qt(i, v) = hi,v(qt)

= Fi,v(qt)− qt(i, v)

:= k(i, v) + α

∫
Rsr

(∑
j

p(j|i, v)
(

(1− ε) max
w

(
u(qt(j, w)− yj,w)

)
+

ε

r − 1

∑
w 6=w∗qt,y,j

(
u(qt(j, w)− yj,w)

)))∏
j,w

ϕ(yj,w)dyj,w − qt(i, v).

• where w∗qt,y,j = arg maxw(qt(j, w)− yj,w).
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Properties of O.D.E.

• h and F are continuously differentiable

• Jacobian matrix of h (resp., F ) at q is J(q)− I (resp., J(q)):

J(q)(i,v),(j,w) =p(j|i, v)α

×
∫ [(

(1− ε)u′(q(j, w)− yj,w)1q,j,w

+
ε

r − 1
u′(q(j, w)− yj,w)

(
1− 1q,j,w

))
×
∏
w

ϕ(yj,w)dyj,w

]

• where 1q,j,w = 1 if q(j, w)− yj,w > q(j, w′)− yj,w′ ∀ w′ 6= w and 0

otherwise
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Cooperative O.D.E.

Definition 3.1

(Cooperative o.d.e) An o.d.e. of the form ẋ = h(x(t)) is a cooperative

o.d.e. if the Jacobian matrix for h is irreducible and

∂hi
∂xj
≥ 0, j 6= i.
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Cooperative O.D.E.

Lemma 3.1

When the controlled Markov chain is irreducible, J(q) (the Jacobian of

F) is a non-negative irreducible matrix and the limiting o.d.e. is a

cooperative o.d.e.

Proof (Outline):

• u′ > 0 implies that J(q) is a non-negative matrix

• J(q) = P × J1(q)

• where P(i,v),(j,w) = p(j|i, v)
• and J1(q) is a positive diagonal matrix with J1(q)(j,w),(j,w) being α

times the integral in the Jacobian

• Since the Markov chain is irreducible, the matrix P is irreducible and

hence, the matrix J(q) will be irreducible

�
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Boundedness

Lemma 3.2

When initiated in the set S := [kmin,K]sr, the limiting o.d.e. stays in

the set S.

Proof (Outline):

• The derivative of qt(i, v) can be bounded using:

kmin − qt(i, v) ≤ d

dt
qt(i, v) ≤ kmax + αu(K + c)− qt(i, v)

• Discretization:

ankmin + (1− an)qn(i, v) ≤ qn+1(i, v) ≤ anK + (1− an)qn(i, v)

• If initiated in the set S := [kmin,K]sr, qn (and by its limit, the

o.d.e. ) stays in the set S

�
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Monotone Dynamical Systems

• The Markov chain is irreducible and the iteration is initiated in the

set S.

• The o.d.e. is cooperative (Lemma 3.1) and it stays within the set S
(Lemma 3.2)

Theorem 3.1

For initial conditions in an open dense set, the solutions of (1) converge

to an equilibirium. 3

• The same is true for the iterates of the discrete map Φ : S 7→ S
which maps q0 to q1

• Since the o.d.e. is cooperative, this map is monotone

• Also, order compact (maps each order interval to a bounded set)

3Hirsch, Smith. Competitive and cooperative systems: A mini-review, 2003
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Monotone Dynamical Systems

Theorem 3.2

There exist maximal and minimal equilibria q∗, q∗ resp., such that any

other equilibrium q̂ satisfies q∗ ≤ q̂ ≤ q∗ componentwise. 4

• q0 ≥ q∗ =⇒ qt → q∗ and likewise, q0 ≤ q∗ =⇒ qt → q∗

• If q∗ > q∗, q∗ ≤ q0 ≤ q∗ =⇒ q∗ ≤ qt ≤ q∗ ∀ t ≥ 0 by monotonicity

4Hirsch, Smith. Monotone maps: a review, 2005
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Monotone Dynamical Systems

Theorem 3.3

At least one of the following holds: 5

1. ∃ a third equilibrium q̂, q∗ < q̂,< q∗,

2. ∃ a trajectory qt of (1) such that qt ↑ q∗ as t ↑ ∞ and qt ↓ q∗ as

t ↓ −∞,

3. ∃ a trajectory qt of (1) such that qt ↓ q∗ as t ↑ ∞ and qt ↑ q∗ as

t ↓ −∞.

Corollary 3.3.1

For stable q∗ and q∗, there is at least one more equilibrium q̂ such that

q∗ < q̂ < q∗.

5Hirsch, Smith. Monotone maps: a review, 2005
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Equilibrium Points



Perron-Frobenius Theorem

• The stability of the equilibria of the Q-learning scheme, which are

the same as equilibria of the differential equation can be analyzed by

looking at the eigenvalues of its Jacobian matrix J(q)− I evaluated

at the equilibrium

Theorem 4.1

(Perron-Frobenius Theorem) Let A be a square non-negative irreducible

matrix. Then

1. A has a real positive eigenvalue λA and λA is strictly greater than the

absolute value of any other eigenvalue of A.

2. r ≤ λA ≤ R where r = mini ri and R = maxi ri and ri denotes the sum

of the elements of row i of A.
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Bounds on Eigenvalues

• Γ(q)i,v: Sum of the (i, v)th row of J(q)

• Γ(q)∗ = maxi,v Γ(q)i,v and similarly Γ(q)∗ = mini,v Γ(q)i,v

• Let λ∗ be the Frobenius eigenvalue of J(q), then

Γ(q)∗ ≤ λ∗ ≤ Γ(q)∗

• For any eigenvalue λ of J(q), λ− 1 is an eigenvalue of the Jacobian

J(q)− I
• Real part of all eigenvalues of J(q)− I are less than λ∗ − 1
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Comments

• u(·) is a s-shaped function

• u′(x) < 1 < 1
α for low and high values of x and can exceed 1

α in the

mid-range

• If u′(x) < 1
α∀x ∈ [0,K + c], then we can use the results by Shen et

al., which show that there will exist only one equilibrium point in the

set and will be stable

• We consider the case where u′(x) exceeds 1
α in the middle region

• Define points a, b in [0,K] as the largest and smallest points in

[0,K] such that u′(x) < 1
α∀x ∈ [0, a) ∪ (b,K + c]
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Example

(a) (b)

Figure 2: Examples of s-shaped valuation maps: (a) shows the case where

u′(x) < 1
α
∀x ∈ [0,K + c] and (b) depicts a and b in a case where u′(x)

exceeds 1
α

in the middle region

25



Stable Regions

Theorem 4.2

There can be at most one equilibrium point in the set (b+ c,K]sr and

if such an equilibrium point exists, it will be a stable equilibrium and

the maximal equilibrium point. Similarly, there can be at most one

equilibrium point in the set [kmin, a− c)sr and if such an equilibrium

point exists, it will be a stable equilibrium and the minimal equilibrium

point.

Proof (Outline):

• Stability:

• For any point in these sets, sum of elements in each row is less than 1

• Hence, λ∗ < 1 and hence, real part of all eigenvalues of the Jacobian

J(q)− I are negative

• Any equilibrium point lying in this region will be stable.
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Stable Regions (cont.)

Proof (cont.):

• Suppose that there are two equilibria q1, q2 in (b+ c,K]sr

• They can be ordered or unordered

• First consider the case where they are ordered and q1 < q2:

• There exists another equilibrium point between any two stable

equilibria so ∃ q3, another equilibrium point such that q1 < q3 < q2

(Corollary 3.3.1)

• q3 will also be a stable equilibrium and hence there will be more

stable equilibrium points between q1, q3, and between q3, q2

• Repeated application of this argument implies that we will have a

curve of non-isolated equilibria

• Real part of all eigenvalues of the Jacobian J(q)− I are negative in

this region implying all equilibria are isolated giving us a contradiction
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Stable Regions (cont.)

Proof (cont.):

• Now consider the case where they are unordered:

• There exists q∗ such that all equilibrium points q satisfy q ≤ q∗

(Theorem 3.2)

• Since, no ordering exists between q1 and q2, they can’t be equal to q∗

• So, q1 < q∗ where both q1 and q∗ lie in this region. But we have

shown earlier that there cannot exist ordered equilibria in the region.

�

We subsequently refer to the sets [kmin, a− c)sr and (b+ c,K]sr as the

lower and upper stable regions respectively.
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Additional Results

• Let points d, e in [0,K] be the smallest and largest points in [0,K]

such that u′(x) > 1
α∀x ∈ (d, e).

Theorem 4.3

Any equilibrium point in the region (d+ c, e− c)sr is an unstable

equilibrium point.

Proof (Outline):

• λ∗ > 1

• At least one eigenvalue has a poisitive real part and hence, any

equilibrium point in this region will be unstable

�
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Additional Results

Theorem 4.4

If all equilibrium points are hyperbolic and u(x) is convex and concave

in the regions x < m1 and x > m1 respectively, then there can exist at

most one stable equilibrium point in the region [kmin,m1 − c)sr.

Similarly in the region (m1 + c,K]sr, there can exist at most one stable

equilibrium. If these exist then they will be the minimal and maximal

equilibrium points respectively.

• This theorem can also be applied where the valuation map is a

traditional utility function

• In our case, there can exist many other stable equilibrium points

with some components below and some above m1
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Numerical Experiments



Parameters

• u(·) :

u(x) =
L

1 + e−γ(x−x0)

• State and Action Space: Values of s and r ranged from 2 to 100

• a(n) :

a(n) =
1

d n
100e

• k :Randomly generated in a given range set by fixing kmin & kmax

• Noise: Cosine distribution with c ≈ 0.01

• α : Varied from 0.01 to 0.99

• Transition matrix: Randomly generated

• ε = 0.05
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Convergence

• Q-learning iteration and the o.d.e. converged to an equilibrium point

and to the same point when initiated at the same point

• Values of s and r (size of state and action space), a(n) and ε have

an impact on the rate of convergence but do not observably affect

the equilibrium points

• Plots of Bellman error (|Qn+1(Xn, Zn)−Qn(Xn, Zn)|) on next slide

32



Convergence Plots: Bellman Error

(a) (b)

Figure 3: Convergence plots: (a) shows the Bellman error plot for modified

Q-learning scheme and (b) shows the moving average of the same over 1000

iterations
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Observations

• As expected, when either α is too small or the function u(·) rises

very gradually (i.e. u′(x) < 1
α in the whole region), then there exists

only one equilibrium point

• For very steep u(·), the iteration usually converges to one of the two

equilibria, one each in the upper and lower zones, depending on the

initiation
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Observations

(a) (b)

Figure 4: Only one equilibrium point exists in the case of (a), while we observe

two equilibrium points for (b), one each in the upper and lower stable regions
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Third Equilibrium Point

• In our initial experiments, we noticed that the iteration converged

either to the maximal or to the minimal equilibrium point only

• To confirm the possibility of existence of a third equilibrium point:

• Manually constructed and computed the equilibrium points for a

small system (s = 4, r = 2)

• Assigned the value 2 to all rewards (i.e., k(i, u) = 2, ∀i, u) for

simplicity

• The two actions were kept identical (i.e. p(j|i, u) = p(j|i, v),∀i, j
where u, v are the two actions for state i)

Figure 5
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Third Equilibrium Point

• Observations for our constructed system:

• Observed that there are 4 stable equilibrium points

• Iteration converges to these additional equilibrium points when

initiated in close vicinity to them

• Apart from this above constructed case, we never observed the

Q-learning iteration to converge to these middle stable equilibrium

points

• While 3 or more stable equilibria can exist for many systems,

convergence to these points seems very infrequent
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Alternate Formulation



Alternate Formulation

• In our original formulation, only the future returns are distorted

using the prospect theoretic valuation map

• Now, the s-shaped curve u(·) is applied to the total returns i.e., both

the current rewards and the future returns are distorted

• Q-learning iteration:

Qn+1(i, v) = Qn(i, v) + a(n)I{Xn = i, Zn = v}

(
u
(
k(i, v) +

α(Qn(Xn+1, Zn+1)− ξn(Xn+1, Zn+1))
)
−Qn(i, v)

)

• u : [0,K + αc] 7→ [0,K]
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Convergence

• When the Markov chain is irreducible and the iteration is initiated in

S1 := [0,K]sr, this formulation of Q-learning also converges
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Stable Regions

• Upper stable region: (b′ + c,K]sr where b′ = b−kmin

α . Exists if the

following holds:

b′ + c < K ⇔ b− kmin
α

+ c < K ⇔ b < kmin + α(K − c).

• Lower stable region: [0, a′ − c)sr where a′ = a−kmax

α . Exists if the

following holds:

a′ − c > 0⇔ a− kmax
α

− c > 0⇔ a > kmax + αc.

• They are more likely to exist for high values of α
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Numerical Experiments

• Converges and exhibits trends similar to the original scheme

• An important difference:

• Maximal equilibrium point of the alternate formulation is higher than

the maximal equilibrium for the original formulation

• Similarly, minimal equilibrium point of the alternate formulation is

lower than the minimal equilibrium for the original formulation
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Thank You!
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Additional Results

(if time permits)



Existence of Equilibrium in Stable Regions

• u1(x) := kmin + αu(x− c)

Theorem 7.1

If u1(b+ c) ≥ b+ c, then there exists a stable maximal equilibrium

point in the region [b+ c,K]sr and any iteration initiated in this set will

converge to this equilibrium point.

Theorem 7.2

If u1(a+ c) > a+ c, then there exists only one equilibrium point in the

set [kmin,K]sr and it will lie in the region (b+ c,K]sr.
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Existence of Equilibrium in Stable Regions

(a) (b)

Figure 6: Theorem 7.1 only gives a sufficient condition: An equilibrium point

exists in the upper stable region both (a) and (b)
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Existence of Equilibrium in Stable Regions

• u2(x) := kmax + αu(x+ c)

Theorem 7.3

If u2(a− c) ≤ a− c, then there exists a stable maximal equilibrium

point in the region [kmin, a− c]sr and any iteration initiated in this set

will converge to this equilibrium point.
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