Prospect Theoretic Q-Learning

Siddharth Chandak, 17D070019
Guide - Prof. Vivek S. Borkar
$17^{\text {th }}$ December 2020
Electrical Engineering
IIT Bombay

Outline

- Introduction
- Modified Q-Learning Scheme
- Convergence
- Equilibrium Points
- Numerical Experiments
- Alternate Formulation

Introduction

Reinforcement Learning

- Reinforcement Learning: Actions taken by a rational agent in order to maximize its expected rewards
- Typically modeled using Markov Decision Processes
- Useful and well-developed model for human decision making
- Economics, Control theory, Robotics and Games

Markov Decision Processes

- Consider finite state space S and finite action space A
- At each time step n, agent chooses action $Z_{n} \in A$ when it is in state $X_{n} \in S$
- Markov control policy:

$$
P\left(X_{n+1}=j \mid X_{m}, Z_{m}, m \leq n\right)=p\left(j \mid X_{n}, Z_{n}\right) \forall n,
$$

Q-Learning

- Q-learning: A reinforcement learning algorithm for MDPs
- Q-learning iteration:

$$
\begin{aligned}
Q_{n+1}(i, u)=Q_{n}(i, u) & +a(n) I\left\{X_{n}=i, Z_{n}=u\right\} \\
& \times\left(k(i, u)+\alpha \max _{a} Q_{n}\left(X_{n+1}, a\right)-Q_{n}(i, u)\right)
\end{aligned}
$$

- α : Discount factor for future rewards
- $a(n)$: Learning rate
- $k(i, u)$: Current reward
- Agent updates $Q(i, u)$ based on next state X_{n+1} and action a which is optimal for current estimate of Q-value

Convergence of Q-Learning Scheme

- Under appropriate conditions ${ }^{1}, Q_{n} \rightarrow Q^{*}$ where Q^{*} is a solution of

$$
Q(i, u)=k(i, u)+\alpha \sum_{j} p(j \mid i, u) \max _{a} Q(j, a),
$$

- Q^{*} is the expected discounted reward of executing action u at state i
- Minimizer of $Q^{*}(i,:)$ yields an optimal choice of control in state i

[^0]
Risk and Prospect Theory

- Reinforcement Learning: Actions taken by a rational agent in order to maximize its expected rewards
- When faced with risk, humans don't always behave rationally
- Reinforcement Learning has been widely studied under risk-neutral and risk-averse policies
- But according to Prospect Theory, humans perceive risk differently in different scenarios

Prospect Theory

- Aims to model actual behavior of people
- A valuation map over gains and losses defined with respect to a reference point
- s-shaped valuation map:
- Marginal impact of change in value diminishes with distance from the reference point
- Concavity for gains contributes to risk aversion for gains
- Convexity for losses contributes to risk seeking behavior

Example

Figure 1

Motivation

- We study classical Q-learning from a prospect theoretic viewpoint
- Future returns are distorted using a s-shaped valuation map
- Previous works ${ }^{2}$ applying such prospect theoretic valuation maps worked with certain restricting assumptions
- Doesn't allow steep valuation maps and high discount factors for future rewards

[^1]Modified Q-Learning Scheme

Q-Learning Iteration

- Prospect theoretic Q-learning iteration:

$$
\begin{aligned}
Q_{n+1}(i, v)= & Q_{n}(i, v)+a(n) I\left\{X_{n}=i, Z_{n}=v\right\}(k(i, v)+ \\
& \left.\alpha u\left(Q_{n}\left(X_{n+1}, Z_{n+1}\right)-\xi_{n}\left(X_{n+1}, Z_{n+1}\right)\right)-Q_{n}(i, v)\right)
\end{aligned}
$$

- $\left\{X_{n}\right\}$: Controlled Markov chain on a finite state space $S,|S|=s$
- $\left\{Z_{n}\right\}$: Control Process in a finite action space $A,|A|=r$
- $\alpha \in(0,1)$: Discount factor
- $a(n) \in[0,1]$: Positive learning rate
- $k>0$: The running reward
- $u(\cdot)$: s-shaped strictly increasing continuously differentiable map

Parameters (cont.)

- Noise:
- $\left\{\xi_{n}=\left[\left[\xi_{n}(i, v)\right]\right]\right\}: \mathcal{R}^{s r}$-valued zero mean i.i.d. noise
- Each $\xi_{n}(i, v)$ is distributed according to a continuously differentiable density $\varphi(\cdot)$ concentrated on a finite interval $[-c, c]$
- $c \in\left[0, k_{\text {min }}\right]$ where $k_{\text {min }}=\min _{i, v} k(i, v)$
- Choice of Z_{n+1} :
- Need ϵ-randomization to ensure adequate exploration
- Use epsilon-greedy policy:

$$
Z_{n+1}= \begin{cases}w_{n+1}^{*} & \text { w.p. }(1-\epsilon) \\ w \neq w_{n+1}^{*} & \text { w.p. } \frac{\epsilon}{r-1} \text { each }\end{cases}
$$

- $w_{n+1}^{*}=\arg \max _{w}\left(Q_{n}\left(X_{n+1}, w\right)-\xi_{n}\left(X_{n+1}, w\right)\right)$
- Define $K:=\frac{k_{\text {max }}}{1-\alpha}$ where $k_{\text {max }}=\max _{i, v} k(i, v)$
- $u:[0, K+c] \mapsto[0, K]$.

Boundedness

Lemma 2.1

When initiated in the set $\mathcal{S}:=\left[k_{\text {min }}, K\right]^{s r}$, the Q-learning iteration stays in the set \mathcal{S}.

Proof (Outline):

- Note that $Q_{n+1}(i, v)$ can be written as the convex combination of $Q_{n}(i, v)$ and U
where $U:=k(i, v)+\alpha u\left(Q_{n}\left(X_{n+1}, Z_{n+1}-\xi_{n}\left(X_{n+1}, Z_{n+1}\right)\right)\right.$

$$
\begin{aligned}
Q_{n+1}(i, v) & =\left(1-a(n) I\left\{X_{n}=i, Z_{n}=v\right\}\right) Q_{n}(i, v) \\
& +a(n) I\left\{X_{n}=i, Z_{n}=v\right\} U
\end{aligned}
$$

- U can be bounded as follows:

$$
\begin{aligned}
k_{\min } \leq U & \leq k_{\max }+\alpha u(K+c) \\
& =k_{\max }+\alpha K=K
\end{aligned}
$$

- $Q_{n} \in \mathcal{S} \Rightarrow Q_{n+1} \in \mathcal{S}$

Convergence

Limiting O.D.E.

- Need the following restriction on $a(n)$:

$$
\sum a(n)=\infty, \sum a(n)^{2}<\infty
$$

- Since $u(\cdot)$ is Lipschitz continuous and $\sup _{n}\left\|Q_{n}\right\|_{\infty} \leq K<\infty$, the Q-learning iteration converges to the following o.d.e.:

$$
\begin{aligned}
& \frac{d}{d t} q_{t}(i, v)=h_{i, v}\left(q_{t}\right) \\
& \quad=F_{i, v}\left(q_{t}\right)-q_{t}(i, v) \\
& \quad:=k(i, v)+\alpha \int_{\mathcal{R}^{s r}}\left(\sum _ { j } p (j | i , v) \left((1-\epsilon) \max _{w}\left(u\left(q_{t}(j, w)-y_{j, w}\right)\right)\right.\right. \\
& \left.\left.\quad+\frac{\epsilon}{r-1} \sum_{w \neq w_{q t, y, j}^{*}}\left(u\left(q_{t}(j, w)-y_{j, w}\right)\right)\right)\right) \prod_{j, w} \varphi\left(y_{j, w}\right) d y_{j, w}-q_{t}(i, v) .
\end{aligned}
$$

- where $w_{q_{t}, y, j}^{*}=\arg \max _{w}\left(q_{t}(j, w)-y_{j, w}\right)$.

Properties of O.D.E.

- h and F are continuously differentiable
- Jacobian matrix of $h($ resp., $F)$ at q is $J(q)-I($ resp., $J(q))$:

$$
\begin{aligned}
J(q)_{(i, v),(j, w)} & =p(j \mid i, v) \alpha \\
& \times \int\left[\left((1-\epsilon) u^{\prime}\left(q(j, w)-y_{j, w}\right) \mathbb{1}_{q, j, w}\right.\right. \\
& \left.+\frac{\epsilon}{r-1} u^{\prime}\left(q(j, w)-y_{j, w}\right)\left(1-\mathbb{1}_{q, j, w}\right)\right) \\
& \left.\times \prod_{w} \varphi\left(y_{j, w}\right) d y_{j, w}\right]
\end{aligned}
$$

- where $\mathbb{1}_{q, j, w}=1$ if $q(j, w)-y_{j, w}>q\left(j, w^{\prime}\right)-y_{j, w^{\prime}} \forall w^{\prime} \neq w$ and 0 otherwise

Cooperative O.D.E.

Definition 3.1

(Cooperative o.d.e) An o.d.e. of the form $\dot{x}=h(x(t))$ is a cooperative o.d.e. if the Jacobian matrix for h is irreducible and

$$
\frac{\partial h_{i}}{\partial x_{j}} \geq 0, j \neq i .
$$

Cooperative O.D.E.

Lemma 3.1

When the controlled Markov chain is irreducible, $J(q)$ (the Jacobian of
F) is a non-negative irreducible matrix and the limiting o.d.e. is a cooperative o.d.e.

Proof (Outline):

- $u^{\prime}>0$ implies that $J(q)$ is a non-negative matrix
- $J(q)=P \times J_{1}(q)$
- where $P_{(i, v),(j, w)}=p(j \mid i, v)$
- and $J_{1}(q)$ is a positive diagonal matrix with $J_{1}(q)_{(j, w),(j, w)}$ being α times the integral in the Jacobian
- Since the Markov chain is irreducible, the matrix P is irreducible and hence, the matrix $J(q)$ will be irreducible

Boundedness

Lemma 3.2

When initiated in the set $\mathcal{S}:=\left[k_{\min }, K\right]^{s r}$, the limiting o.d.e. stays in the set \mathcal{S}.

Proof (Outline):

- The derivative of $q_{t}(i, v)$ can be bounded using:

$$
k_{\min }-q_{t}(i, v) \leq \frac{d}{d t} q_{t}(i, v) \leq k_{\max }+\alpha u(K+c)-q_{t}(i, v)
$$

- Discretization:

$$
a_{n} k_{\min }+\left(1-a_{n}\right) q_{n}(i, v) \leq q_{n+1}(i, v) \leq a_{n} K+\left(1-a_{n}\right) q_{n}(i, v)
$$

- If initiated in the set $\mathcal{S}:=\left[k_{\text {min }}, K\right]^{s r}, q_{n}$ (and by its limit, the o.d.e.) stays in the set \mathcal{S}

Monotone Dynamical Systems

- The Markov chain is irreducible and the iteration is initiated in the set \mathcal{S}.
- The o.d.e. is cooperative (Lemma 3.1) and it stays within the set \mathcal{S} (Lemma 3.2)

Theorem 3.1

For initial conditions in an open dense set, the solutions of (1) converge to an equilibirium. ${ }^{3}$

- The same is true for the iterates of the discrete map $\Phi: \mathcal{S} \mapsto \mathcal{S}$ which maps q_{0} to q_{1}
- Since the o.d.e. is cooperative, this map is monotone
- Also, order compact (maps each order interval to a bounded set)

[^2]
Monotone Dynamical Systems

Theorem 3.2

There exist maximal and minimal equilibria q^{*}, q_{*} resp., such that any other equilibrium \hat{q} satisfies $q_{*} \leq \hat{q} \leq q^{*}$ componentwise. ${ }^{4}$

- $q_{0} \geq q^{*} \Longrightarrow q_{t} \rightarrow q^{*}$ and likewise, $q_{0} \leq q_{*} \Longrightarrow q_{t} \rightarrow q_{*}$
- If $q^{*}>q_{*}, q_{*} \leq q_{0} \leq q^{*} \Longrightarrow q_{*} \leq q_{t} \leq q^{*} \forall t \geq 0$ by monotonicity

[^3]
Monotone Dynamical Systems

Theorem 3.3

At least one of the following holds: ${ }^{5}$

1. \exists a third equilibrium $\hat{q}, q_{*}<\hat{q},<q^{*}$,
2. \exists a trajectory q_{t} of (1) such that $q_{t} \uparrow q^{*}$ as $t \uparrow \infty$ and $q_{t} \downarrow q_{*}$ as $t \downarrow-\infty$,
3. \exists a trajectory q_{t} of (1) such that $q_{t} \downarrow q_{*}$ as $t \uparrow \infty$ and $q_{t} \uparrow q^{*}$ as $t \downarrow-\infty$.

Corollary 3.3.1

For stable q_{*} and q^{*}, there is at least one more equilibrium \hat{q} such that $q_{*}<\hat{q}<q^{*}$.

[^4]
Equilibrium Points

Perron-Frobenius Theorem

- The stability of the equilibria of the Q-learning scheme, which are the same as equilibria of the differential equation can be analyzed by looking at the eigenvalues of its Jacobian matrix $J(q)-I$ evaluated at the equilibrium

Theorem 4.1

(Perron-Frobenius Theorem) Let A be a square non-negative irreducible matrix. Then

1. A has a real positive eigenvalue λ_{A} and λ_{A} is strictly greater than the absolute value of any other eigenvalue of A.
2. $r \leq \lambda_{A} \leq R$ where $r=\min _{i} r_{i}$ and $R=\max _{i} r_{i}$ and r_{i} denotes the sum of the elements of row i of A.

Bounds on Eigenvalues

- $\Gamma(q)_{i, v}$: Sum of the $(i, v)^{\text {th }}$ row of $J(q)$
- $\Gamma(q)^{*}=\max _{i, v} \Gamma(q)_{i, v}$ and similarly $\Gamma(q)_{*}=\min _{i, v} \Gamma(q)_{i, v}$
- Let λ^{*} be the Frobenius eigenvalue of $J(q)$, then $\Gamma(q)_{*} \leq \lambda^{*} \leq \Gamma(q)^{*}$
- For any eigenvalue λ of $J(q), \lambda-1$ is an eigenvalue of the Jacobian $J(q)-I$
- Real part of all eigenvalues of $J(q)-I$ are less than $\lambda^{*}-1$

Comments

- $u(\cdot)$ is a s-shaped function
- $u^{\prime}(x)<1<\frac{1}{\alpha}$ for low and high values of x and can exceed $\frac{1}{\alpha}$ in the mid-range
- If $u^{\prime}(x)<\frac{1}{\alpha} \forall x \in[0, K+c]$, then we can use the results by Shen et al., which show that there will exist only one equilibrium point in the set and will be stable
- We consider the case where $u^{\prime}(x)$ exceeds $\frac{1}{\alpha}$ in the middle region
- Define points a, b in $[0, K]$ as the largest and smallest points in $[0, K]$ such that $u^{\prime}(x)<\frac{1}{\alpha} \forall x \in[0, a) \cup(b, K+c]$

Example

Figure 2: Examples of s-shaped valuation maps: (a) shows the case where $u^{\prime}(x)<\frac{1}{\alpha} \forall x \in[0, K+c]$ and (b) depicts a and b in a case where $u^{\prime}(x)$ exceeds $\frac{1}{\alpha}$ in the middle region

Stable Regions

Theorem 4.2

There can be at most one equilibrium point in the set $(b+c, K]^{s r}$ and if such an equilibrium point exists, it will be a stable equilibrium and the maximal equilibrium point. Similarly, there can be at most one equilibrium point in the set $\left[k_{\text {min }}, a-c\right)^{s r}$ and if such an equilibrium point exists, it will be a stable equilibrium and the minimal equilibrium point.

Proof (Outline):

- Stability:
- For any point in these sets, sum of elements in each row is less than 1
- Hence, $\lambda^{*}<1$ and hence, real part of all eigenvalues of the Jacobian $J(q)-I$ are negative
- Any equilibrium point lying in this region will be stable.

Stable Regions (cont.)

Proof (cont.):

- Suppose that there are two equilibria q_{1}, q_{2} in $(b+c, K]^{s r}$
- They can be ordered or unordered
- First consider the case where they are ordered and $q_{1}<q_{2}$:
- There exists another equilibrium point between any two stable equilibria so $\exists q_{3}$, another equilibrium point such that $q_{1}<q_{3}<q_{2}$ (Corollary 3.3.1)
- q_{3} will also be a stable equilibrium and hence there will be more stable equilibrium points between q_{1}, q_{3}, and between q_{3}, q_{2}
- Repeated application of this argument implies that we will have a curve of non-isolated equilibria
- Real part of all eigenvalues of the Jacobian $J(q)-I$ are negative in this region implying all equilibria are isolated giving us a contradiction

Stable Regions (cont.)

Proof (cont.):

- Now consider the case where they are unordered:
- There exists q^{*} such that all equilibrium points q satisfy $q \leq q^{*}$ (Theorem 3.2)
- Since, no ordering exists between q_{1} and q_{2}, they can't be equal to q^{*}
- So, $q_{1}<q^{*}$ where both q_{1} and q^{*} lie in this region. But we have shown earlier that there cannot exist ordered equilibria in the region.

We subsequently refer to the sets $\left[k_{\text {min }}, a-c\right)^{s r}$ and $(b+c, K]^{s r}$ as the lower and upper stable regions respectively.

Additional Results

- Let points d, e in $[0, K]$ be the smallest and largest points in $[0, K]$ such that $u^{\prime}(x)>\frac{1}{\alpha} \forall x \in(d, e)$.

Theorem 4.3

Any equilibrium point in the region $(d+c, e-c)^{s r}$ is an unstable equilibrium point.

Proof (Outline):

- $\lambda^{*}>1$
- At least one eigenvalue has a poisitive real part and hence, any equilibrium point in this region will be unstable

Additional Results

Theorem 4.4

If all equilibrium points are hyperbolic and $u(x)$ is convex and concave in the regions $x<m_{1}$ and $x>m_{1}$ respectively, then there can exist at most one stable equilibrium point in the region $\left[k_{\text {min }}, m_{1}-c\right)^{s r}$. Similarly in the region $\left(m_{1}+c, K\right]^{s r}$, there can exist at most one stable equilibrium. If these exist then they will be the minimal and maximal equilibrium points respectively.

- This theorem can also be applied where the valuation map is a traditional utility function
- In our case, there can exist many other stable equilibrium points with some components below and some above m_{1}

Numerical Experiments

Parameters

- $u(\cdot)$:

$$
u(x)=\frac{L}{1+e^{-\gamma\left(x-x_{0}\right)}}
$$

- State and Action Space: Values of s and r ranged from 2 to 100
- $a(n)$:

$$
a(n)=\frac{1}{\left\lceil\frac{n}{100}\right\rceil}
$$

- k : Randomly generated in a given range set by fixing $k_{\min } \& k_{\max }$
- Noise: Cosine distribution with $c \approx 0.01$
- α : Varied from 0.01 to 0.99
- Transition matrix: Randomly generated
- $\epsilon=0.05$

Convergence

- Q-learning iteration and the o.d.e. converged to an equilibrium point and to the same point when initiated at the same point
- Values of s and r (size of state and action space), $a(n)$ and ϵ have an impact on the rate of convergence but do not observably affect the equilibrium points
- Plots of Bellman error $\left(\left|Q_{n+1}\left(X_{n}, Z_{n}\right)-Q_{n}\left(X_{n}, Z_{n}\right)\right|\right)$ on next slide

Convergence Plots: Bellman Error

Figure 3: Convergence plots: (a) shows the Bellman error plot for modified Q-learning scheme and (b) shows the moving average of the same over 1000 iterations

Observations

- As expected, when either α is too small or the function $u(\cdot)$ rises very gradually (i.e. $u^{\prime}(x)<\frac{1}{\alpha}$ in the whole region), then there exists only one equilibrium point
- For very steep $u(\cdot)$, the iteration usually converges to one of the two equilibria, one each in the upper and lower zones, depending on the initiation

Observations

Figure 4: Only one equilibrium point exists in the case of (a), while we observe two equilibrium points for (b), one each in the upper and lower stable regions

Third Equilibrium Point

- In our initial experiments, we noticed that the iteration converged either to the maximal or to the minimal equilibrium point only
- To confirm the possibility of existence of a third equilibrium point:
- Manually constructed and computed the equilibrium points for a small system ($s=4, r=2$)
- Assigned the value 2 to all rewards (i.e., $k(i, u)=2, \forall i, u$) for simplicity
- The two actions were kept identical (i.e. $p(j \mid i, u)=p(j \mid i, v), \forall i, j$ where u, v are the two actions for state i)

Figure 5

Third Equilibrium Point

- Observations for our constructed system:
- Observed that there are 4 stable equilibrium points
- Iteration converges to these additional equilibrium points when initiated in close vicinity to them
- Apart from this above constructed case, we never observed the Q-learning iteration to converge to these middle stable equilibrium points
- While 3 or more stable equilibria can exist for many systems, convergence to these points seems very infrequent

Alternate Formulation

Alternate Formulation

- In our original formulation, only the future returns are distorted using the prospect theoretic valuation map
- Now, the s-shaped curve $u(\cdot)$ is applied to the total returns i.e., both the current rewards and the future returns are distorted
- Q-learning iteration:

$$
\begin{aligned}
Q_{n+1}(i, v)= & Q_{n}(i, v)+a(n) I\left\{X_{n}=i, Z_{n}=v\right\}(u(k(i, v)+ \\
& \left.\left.\alpha\left(Q_{n}\left(X_{n+1}, Z_{n+1}\right)-\xi_{n}\left(X_{n+1}, Z_{n+1}\right)\right)\right)-Q_{n}(i, v)\right)
\end{aligned}
$$

- $u:[0, K+\alpha c] \mapsto[0, K]$

Convergence

- When the Markov chain is irreducible and the iteration is initiated in $\mathcal{S}_{1}:=[0, K]^{s r}$, this formulation of Q-learning also converges

Stable Regions

- Upper stable region: $\left(b^{\prime}+c, K\right]^{s r}$ where $b^{\prime}=\frac{b-k_{\text {min }}}{\alpha}$. Exists if the following holds:

$$
b^{\prime}+c<K \Leftrightarrow \frac{b-k_{\min }}{\alpha}+c<K \Leftrightarrow b<k_{\min }+\alpha(K-c) .
$$

- Lower stable region: $\left[0, a^{\prime}-c\right)^{s r}$ where $a^{\prime}=\frac{a-k_{\max }}{\alpha}$. Exists if the following holds:

$$
a^{\prime}-c>0 \Leftrightarrow \frac{a-k_{\max }}{\alpha}-c>0 \Leftrightarrow a>k_{\max }+\alpha c .
$$

- They are more likely to exist for high values of α

Numerical Experiments

- Converges and exhibits trends similar to the original scheme
- An important difference:
- Maximal equilibrium point of the alternate formulation is higher than the maximal equilibrium for the original formulation
- Similarly, minimal equilibrium point of the alternate formulation is lower than the minimal equilibrium for the original formulation

Thank You!

Additional Results

(if time permits)

Existence of Equilibrium in Stable Regions

- $u_{1}(x):=k_{\text {min }}+\alpha u(x-c)$

Theorem 7.1

If $u_{1}(b+c) \geq b+c$, then there exists a stable maximal equilibrium point in the region $[b+c, K]^{s r}$ and any iteration initiated in this set will converge to this equilibrium point.

Theorem 7.2

If $u_{1}(a+c)>a+c$, then there exists only one equilibrium point in the set $\left[k_{\text {min }}, K\right]^{s r}$ and it will lie in the region $(b+c, K]^{s r}$.

Existence of Equilibrium in Stable Regions

Figure 6: Theorem 7.1 only gives a sufficient condition: An equilibrium point exists in the upper stable region both (a) and (b)

Existence of Equilibrium in Stable Regions

- $u_{2}(x):=k_{\max }+\alpha u(x+c)$

Theorem 7.3

If $u_{2}(a-c) \leq a-c$, then there exists a stable maximal equilibrium point in the region $\left[k_{\min }, a-c\right]^{s r}$ and any iteration initiated in this set will converge to this equilibrium point.

[^0]: ${ }^{1}$ Stochastic approximation: a dynamical systems view-point by Vivek S. Borkar

[^1]: ${ }^{2}$ Shen et al., Risk-sensitive reinforcement learning, 2014

[^2]: ${ }^{3}$ Hirsch, Smith. Competitive and cooperative systems: A mini-review, 2003

[^3]: ${ }^{4}$ Hirsch, Smith. Monotone maps: a review, 2005

[^4]: ${ }^{5}$ Hirsch, Smith. Monotone maps: a review, 2005

