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Framework



Two-Time-Scale lterations

Coupled iterations updating on separate time-scales

Try1 = T + o (f(@r, Yr) — T + Mig1)

Yk+1 = Uk + Be(9(@k, k) — ye + Mi 1)

Want to solve f(x,y) =« and g(x,y) = y given noisy realizations

My, 41 and M, are martingale difference noise sequences arising
from noisy observations

e Timescales dictated by the different stepsizes ay, and



Two-Time-Scale lterations

Faster: xp41 = xp + ar(f(zr, yr) — 2k + Mii1)

Slower: yr+1 = Yk + Br(9(r, Yx) — Yx + My 1)

e (. is larger, or decays at a slower rate, e.g., l/no'6

e [3; is smaller, or decays at a faster rate, e.g., 1/n% 7

e Analysis

e Faster time-scale: yi considered quasi-static
e Slower time-scale: z, tracks 2" (yx), the fixed point for f(-,yx)



Contractive and Non-Expansive Mappings

e Contractive:

e There exists 0 < p < 1 such that for all z1, x2,

1f (1) = f(@2)]| < pllwr — 2|

o Equivalent to  — f(z) being a strongly monotone operator*
e Non-expansive:
e For all z1,x2,

[f (1) = f@2)ll < [lo1 — 22|

e Equivalent to z — f(x) being a co-coercive operator?

Lcontractive <= strongly monotone and Lipschitz
2non-expansive <= co-coercive



Our Framework

e f(xz,y) is p-contractive in x

o [[f(@1,y) = f(2, )|l < pllwr — a2, for all 21, 22,y
e For each y, there exists unique z”*(y) such that f(z*(y),y) = =" (v)

e g(z*(y),y) is non-expansive

* llg(z*(y1), 91) — (=" (y2), y2)ll < llys — ||
e Assume that set of fixed points of g(z*(-),-) is non-empty (denote

by V")



Difference from Literature

Our Framework

e f(z,y) is p-contractive in x

e g(z*(y),y) is non-expansive

Other Finite-Time Analysis Works

e f(x,y) and g(x*(y),y) are contractive in x and y, respectively
e Unique fixed points and solution to f(z*,y*) = z* and
9@, y") =y"

e Stronger convergence results



An Interesting Variant




Projected Variant

zr1 = Px (zx + ar(f(zh, Yr) — T + Mi11))
Yk+1 = Uk + Be(9(@k, yk) — Y + My, 1)

e Py: Projection onto X, a convex and bounded set
o Px(x)=argmingcx ||z — 2/
e How this setup is different?

e Relevant fixed point is Z(y), the fixed point for Px(f(-,v))
e Px(f(-,y)) still assumed to be u-contractive
e Now g(Z(+),-) assumed to be non-expansive



Interesting Scenarios

e Recall that z*(y) is fixed point for f(-,y) and &(y) is fixed point for
Px(f(-y))

e There exist scenarios where g(z*(y),y) is contractive, but ¢g(Z(y), y)
is non-expansive (and not contractive)

e Implication: Faster convergence rate analysis possible in absence of

projection



Convergence Rates




Assumptions

e Functions f(-,-) and g(-,+) are L-Lipschitz
® M1 and Mj | are martingale difference sequences with respect to
Fi = o(zo, yo, My, M!,i < k). Moreover,
El|Mi41 1 + | Mi i I? | Fil < 21+ Nzall® + [lyell?), V& >0

e Stepsize Sequences:

ap ~ Bo
(N

A —

where 0.5 < a < b < 1. Importantly,

2
%y
Qg

10



Convergence Rate

Theorem
The iterates satisfy the following:

o E[llzx —a*(ye)?] = O (1/(k+1)%)
e E[llg(@*(yx), yx) — yxll’] = O (1/(k +1)*~°)

e ||z — 2*(yx)|| converges to zero, and the iterates y;, converge to
the set )* with probability 1.

e Remark: The same result holds for the projected variant as well
(replacing x*(y) with &(y))

11



Optimal Rate

e Want to maximize 1 — b under the constraints, 0.5 < a < b and
2b > 3a

e Optimal Rate: O (1/k%%57°), achieved at a, = 1/(k + 1)0:5+2/3¢
and Br = 1/(k + 1)0-75+¢

e Here € > 0 can be arbitrarily small
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Comparison

Contractive-Nonexpansive

Contractive-Contractive®

o E[llzx — z*(y)lI?] = O (&)
o Efllg(z*(yr), yx) — vell’] =
0 (=)

e Optimal Rate: O (*)

£0.25—¢

[ ] ak:O(kolegs)
* B =0 (zorre)

o E[[lzx — z* (un)l?] = O (&)
o E[lyx —v*1?] =0 (&)
e Optimal Rate: O (%)

° ap =

o
e B=0(

= =
S—

3Chandak, Siddharth. "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale
Stochastic Approximation.” arXiv:2504.19375 (2025).
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Applications




Linear Stochastic Approximation

e Want to solve A1z + Aoy = by and Az + Agoy = bo.

e Receive unbiased estimates A(kH) and b(kﬂ)

Tp4+1 = T + Qg (Bﬁ’”” = flg?’l)xk — A§§+1)yk)
Yk+1 = Yk + B ( (k+1) fl(kﬂ) flg;H)yk) .

e Define A = Agyy — Ay A Ao

Corollary

If —Aj; is negative definite and —A is (non-zero) negative semidefinite,
then

E [||A11!E aF A12y — b1H2 aF ||A21(E =F A22y == b2H2:| = 0(1/k0'25_€)
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Strongly Concave-Convex Minimax Optimization

e Minimax Optimization Problem: min, g4, max,cga, H(z,y)

e Two-Time-Scale Stochastic Gradient Descent Ascent (TTSGDA):
Tpt1 = T + (Vo H (Tk, yi) + Mi11)
Y1 = Yk + Br(=VyH (25, yi) + Myiq)-

o Define ®(y) = max,cpa, H(z,y)

Corollary
If H(x,y) is smooth, strongly concave in z and convex in y, then the

iterates converge to the set of saddle points of H(x,y) a.s., and
E[|Ve(y)lI’] = O(1/k%257¢).
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Constrained Optimization

maximize G(z)

subject to:
Hi(x) <0,i=1,...,m
Az = by.

X={z|H;j(x) <0,i=1,...,m}
e Ax = by represents the additional linear constraint

e Two-time-scale Lagrangian optimization:
Tr+1 = Px (wk + o (VG (x) — AT A, + Mk+1))
A4l = A\, + Bk(Awk = bo).

e Applications:

e Distributed optimization with separate local and global constraints
e Game control or generalized Nash equilibrium problems (GNEP)
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Constrained Optimization

e Scenario where projection leads to non-expansiveness

e Consider no inequality constraints

maximize G(z)

subject to:

Az = bo.

Tp41 :%(l'k + ar(VG(xg) — ATA;C + MkJrl))
Akt1 = Ap + Br(Azy, — bo).

e This is an example of contractive-contractive iterations
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Constrained Optimization

e Coming back to our original constrained problem with the following
two-time-scale iterations:

Tpp1 = P (2x + ar(VG(zx) — AT A + My11))
>\k-+1 =\ + ﬁk(Axk. — bo).

Theorem

For continuously differentiable and convex H;(-) and if there exists
x € int(X) such that Az = by, then

E[ Az(Ax) — bolI”] = O(1/k*#7)
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Thank You!



Thank You!

The talk was primarily based on

e Chandak, Siddharth, "Non-Expansive Mappings in Two-Time-Scale
Stochastic Approximation: Finite-Time Analysis.” arXiv:2501.10806
(2025).

with some results from

e Chandak, Siddharth, "O(1/k) Finite-Time Bound for Non-Linear
Two-Time-Scale Stochastic Approximation.” arXiv:2504.19375 (2025).

e Chandak, Siddharth, llai Bistritz, and Nicholas Bambos, " Learning to
Control Unknown Strongly Monotone Games.” arXiv:2407.00575 (2024).
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