

Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation

Siddharth Chandak

June 30, 2025

Department of Electrical Engineering, Stanford University

Outline

- Framework
- An Interesting Variant: Projections
- Convergence Rates
- Applications

Framework

Two-Time-Scale Iterations

• Coupled iterations updating on separate time-scales

$$x_{k+1} = x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k + M'_{k+1})$$

- Want to solve f(x,y) = x and g(x,y) = y given noisy realizations
- M_{k+1} and M'_{k+1} are martingale difference noise sequences arising from noisy observations
- ullet Timescales dictated by the different stepsizes $lpha_k$ and eta_k

Two-Time-Scale Iterations

Faster:
$$x_{k+1}=x_k+\alpha_k(f(x_k,y_k)-x_k+M_{k+1})$$
 Slower:
$$y_{k+1}=y_k+\beta_k(g(x_k,y_k)-y_k+M_{k+1}')$$

- α_k is larger, or decays at a slower rate, e.g., $1/n^{0.6}$
- ullet eta_k is smaller, or decays at a faster rate, e.g., $1/n^{0.75}$
- Analysis
 - Faster time-scale: y_k considered quasi-static
 - Slower time-scale: x_k tracks $x^*(y_k)$, the fixed point for $f(\cdot,y_k)$

4

Contractive and Non-Expansive Mappings

- Contractive:
 - There exists $0 \le \mu < 1$ such that for all x_1, x_2 ,

$$||f(x_1) - f(x_2)|| \le \mu ||x_1 - x_2||$$

- Equivalent to x f(x) being a strongly monotone operator¹
- Non-expansive:
 - For all x_1, x_2 ,

$$||f(x_1) - f(x_2)|| \le ||x_1 - x_2||$$

• Equivalent to x - f(x) being a co-coercive operator²

¹contractive ⇔ strongly monotone and Lipschitz

²non-expansive ←⇒ co-coercive

Our Framework

- f(x,y) is μ -contractive in x
 - $||f(x_1,y)-f(x_2,y)|| \le \mu ||x_1-x_2||$, for all x_1,x_2,y
 - \bullet For each y , there exists unique $x^*(y)$ such that $f(x^*(y),y)=x^*(y)$
- $g(x^*(y), y)$ is non-expansive
 - $||g(x^*(y_1), y_1) g(x^*(y_2), y_2)|| \le ||y_1 y_2||$
 - Assume that set of fixed points of $g(x^*(\cdot),\cdot)$ is non-empty (denote by $\mathcal{Y}^*)$

Difference from Literature

Our Framework

- f(x,y) is μ -contractive in x
- $g(x^*(y), y)$ is non-expansive

Other Finite-Time Analysis Works

- ullet f(x,y) and $g(x^*(y),y)$ are contractive in x and y, respectively
- Unique fixed points and solution to $f(x^*,y^*)=x^*$ and $g(x^*,y^*)=y^*$
- Stronger convergence results

An Interesting Variant

Projected Variant

$$x_{k+1} = \mathcal{P}_{\mathcal{X}} (x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1}))$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k + M'_{k+1})$$

- $\mathcal{P}_{\mathcal{X}}$: Projection onto \mathcal{X} , a convex and bounded set
- $\mathcal{P}_{\mathcal{X}}(x) = \arg\min_{x' \in \mathcal{X}} \|x x'\|$
- How this setup is different?
 - Relevant fixed point is $\hat{x}(y)$, the fixed point for $\mathcal{P}_{\mathcal{X}}(f(\cdot,y))$
 - $\mathcal{P}_{\mathcal{X}}(f(\cdot,y))$ still assumed to be μ -contractive
 - $\bullet \ \ \mbox{Now} \ g(\hat{x}(\cdot),\cdot)$ assumed to be non-expansive

Interesting Scenarios

- Recall that $x^*(y)$ is fixed point for $f(\cdot,y)$ and $\hat{x}(y)$ is fixed point for $\mathcal{P}_{\mathcal{X}}(f(\cdot,y))$
- There exist scenarios where $g(x^*(y),y)$ is contractive, but $g(\hat{x}(y),y)$ is non-expansive (and not contractive)
- Implication: Faster convergence rate analysis possible in absence of projection

Convergence Rates

Assumptions

- Functions $f(\cdot, \cdot)$ and $g(\cdot, \cdot)$ are L-Lipschitz
- M_{k+1} and M'_{k+1} are martingale difference sequences with respect to $\mathcal{F}_k = \sigma(x_0, y_0, M_i, M'_i, i \leq k)$. Moreover,

$$\mathbb{E}[\|M_{k+1}\|^2 + \|M'_{k+1}\|^2 \mid \mathcal{F}_k] \le \mathfrak{c}_2(1 + \|x_k\|^2 + \|y_k\|^2), \ \forall k \ge 0$$

• Stepsize Sequences:

$$\alpha_k = \frac{\alpha_0}{(k+1)^{\mathfrak{a}}}$$
 and $\beta_k = \frac{\beta_0}{(k+1)^{\mathfrak{b}}}$,

where $0.5 < \mathfrak{a} < \mathfrak{b} < 1$. Importantly,

$$\frac{\beta_k^2}{\alpha_k^3} \le 1$$

Convergence Rate

Theorem

The iterates satisfy the following:

- $\mathbb{E}\left[\|x_k x^*(y_k)\|^2\right] = \mathcal{O}\left(1/(k+1)^{\mathfrak{a}}\right)$
- $\mathbb{E}\left[\|g(x^*(y_k), y_k) y_k\|^2\right] = \mathcal{O}\left(1/(k+1)^{1-b}\right)$
- $||x_k x^*(y_k)||$ converges to zero, and the iterates y_k converge to the set \mathcal{Y}^* with probability 1.
- Remark: The same result holds for the projected variant as well (replacing $x^*(y)$ with $\hat{x}(y)$)

Optimal Rate

- Want to maximize $1-\mathfrak{b}$ under the constraints, $0.5<\mathfrak{a}<\mathfrak{b}$ and $2\mathfrak{b}\geq 3\mathfrak{a}$
- Optimal Rate: $\mathcal{O}\left(1/k^{0.25-\epsilon}\right)$, achieved at $\alpha_k=1/(k+1)^{0.5+2/3\epsilon}$ and $\beta_k=1/(k+1)^{0.75+\epsilon}$
- Here $\epsilon > 0$ can be arbitrarily small

Comparison

Contractive-Nonexpansive

•
$$\mathbb{E}\left[\|x_k - x^*(y_k)\|^2\right] = \mathcal{O}\left(\frac{1}{k^a}\right)$$

•
$$\mathbb{E}\left[\|g(x^*(y_k), y_k) - y_k\|^2\right] = \mathcal{O}\left(\frac{1}{k^{1-b}}\right)$$

• Optimal Rate: $\mathcal{O}\left(\frac{1}{k^{0.25-\epsilon}}\right)$

•
$$\alpha_k = \mathcal{O}\left(\frac{1}{k^{0.5+2/3\epsilon}}\right)$$

•
$$\beta_k = \mathcal{O}\left(\frac{1}{k^{0.75+\epsilon}}\right)$$

Contractive-Contractive³

•
$$\mathbb{E}\left[\|x_k - x^*(y_k)\|^2\right] = \mathcal{O}\left(\frac{1}{k^a}\right)$$

•
$$\mathbb{E}\left[\|y_k - y^*\|^2\right] = \mathcal{O}\left(\frac{1}{k^{\mathfrak{a}}}\right)$$

• Optimal Rate: $\mathcal{O}\left(\frac{1}{k}\right)$

•
$$\alpha_k = \mathcal{O}\left(\frac{1}{k}\right)$$

•
$$\beta_k = \mathcal{O}\left(\frac{1}{k}\right)$$

 $^{^3}$ Chandak, Siddharth. "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation." arXiv:2504.19375 (2025).

Applications

Linear Stochastic Approximation

- Want to solve $A_{11}x + A_{12}y = b_1$ and $A_{21}x + A_{22}y = b_2$.
- \bullet Receive unbiased estimates $\tilde{A}_{ij}^{(k+1)}$ and $\tilde{b}_{i}^{(k+1)}$

$$x_{k+1} = x_k + \alpha_k \left(\tilde{b}_1^{(k+1)} - \tilde{A}_{11}^{(k+1)} x_k - \tilde{A}_{12}^{(k+1)} y_k \right)$$
$$y_{k+1} = y_k + \beta_k \left(\tilde{b}_2^{(k+1)} - \tilde{A}_{21}^{(k+1)} x_k - \tilde{A}_{22}^{(k+1)} y_k \right).$$

• Define $\Delta = A_{22} - A_{21}A_{11}^{-1}A_{12}$

Corollary

If $-A_{11}$ is negative definite and $-\Delta$ is (non-zero) negative semidefinite, then

$$\mathbb{E}\left[\|A_{11}x + A_{12}y - b_1\|^2 + \|A_{21}x + A_{22}y - b_2\|^2\right] = \mathcal{O}(1/k^{0.25 - \epsilon})$$

Strongly Concave-Convex Minimax Optimization

- Minimax Optimization Problem: $\min_{y \in \mathbb{R}^{d_2}} \max_{x \in \mathbb{R}^{d_1}} H(x,y)$
- Two-Time-Scale Stochastic Gradient Descent Ascent (TTSGDA):

$$x_{k+1} = x_k + \alpha_k(\nabla_x H(x_k, y_k) + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k(-\nabla_y H(x_k, y_k) + M'_{k+1}).$$

• Define $\Phi(y) = \max_{x \in \mathbb{R}^{d_1}} H(x, y)$

Corollary

If H(x,y) is smooth, strongly concave in x and convex in y, then the iterates converge to the set of saddle points of H(x,y) a.s., and $\mathbb{E}[\|\nabla\Phi(y)\|^2] = \mathcal{O}(1/k^{0.25-\epsilon}).$

Constrained Optimization

maximize
$$G(x)$$
 subject to:
$$H_i(x) \leq 0, i=1,\ldots,m$$
 $Ax=b_0.$

- $\mathcal{X} = \{x \mid H_i(x) \leq 0, i = 1, \dots, m\}$
- $Ax = b_0$ represents the additional linear constraint
- Two-time-scale Lagrangian optimization:

$$x_{k+1} = \mathcal{P}_{\mathcal{X}} \left(x_k + \alpha_k (\nabla G(x_k) - A^T \lambda_k + M_{k+1}) \right)$$

$$\lambda_{k+1} = \lambda_k + \beta_k (Ax_k - b_0).$$

- Applications:
 - Distributed optimization with separate local and global constraints
 - Game control or generalized Nash equilibrium problems (GNEP)

Constrained Optimization

- Scenario where projection leads to non-expansiveness
- Consider no inequality constraints

maximize
$$G(x)$$
 subject to:
$$\underbrace{H_i(x) \leq 0, i \equiv 1, \dots, m}_{Ax = b_0}.$$

$$x_{k+1} = \mathcal{P}_{\mathcal{K}}(x_k + \alpha_k(\nabla G(x_k) - A^T \lambda_k + M_{k+1}))$$
$$\lambda_{k+1} = \lambda_k + \beta_k(Ax_k - b_0).$$

This is an example of contractive-contractive iterations

Constrained Optimization

 Coming back to our original constrained problem with the following two-time-scale iterations:

$$x_{k+1} = \mathcal{P}_{\mathcal{X}} (x_k + \alpha_k (\nabla G(x_k) - A^T \lambda_k + M_{k+1}))$$

$$\lambda_{k+1} = \lambda_k + \beta_k (Ax_k - b_0).$$

Theorem

For continuously differentiable and convex $H_i(\cdot)$ and if there exists $x \in \text{int}(\mathcal{X})$ such that $Ax = b_0$, then

$$\mathbb{E}[\|A\hat{x}(\lambda_k) - b_0\|^2] = \mathcal{O}(1/k^{0.25 - \epsilon})$$

Thank You!

Thank You!

The talk was primarily based on

 Chandak, Siddharth, "Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis." arXiv:2501.10806 (2025).

with some results from

- Chandak, Siddharth, "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation." arXiv:2504.19375 (2025).
- Chandak, Siddharth, Ilai Bistritz, and Nicholas Bambos, "Learning to Control Unknown Strongly Monotone Games." arXiv:2407.00575 (2024).