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Framework



Two-Time-Scale Iterations

• Coupled iterations updating on separate time-scales

xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

yk+1 = yk + βk(g(xk, yk)− yk +M ′k+1)

• Want to solve f(x, y) = x and g(x, y) = y given noisy realizations

• Mk+1 and M ′k+1 are martingale difference noise sequences arising

from noisy observations

• Timescales dictated by the different stepsizes αk and βk
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Two-Time-Scale Iterations

Faster: xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

Slower: yk+1 = yk + βk(g(xk, yk)− yk +M ′k+1)

• αk is larger, or decays at a slower rate, e.g., 1/n0.6

• βk is smaller, or decays at a faster rate, e.g., 1/n0.75

• Analysis

• Faster time-scale: yk considered quasi-static

• Slower time-scale: xk tracks x∗(yk), the fixed point for f(·, yk)
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Contractive and Non-Expansive Mappings

• Contractive:

• There exists 0 ≤ µ < 1 such that for all x1, x2,

‖f(x1)− f(x2)‖ ≤ µ‖x1 − x2‖

• Equivalent to x− f(x) being a strongly monotone operator1

• Non-expansive:

• For all x1, x2,

‖f(x1)− f(x2)‖ ≤ ‖x1 − x2‖

• Equivalent to x− f(x) being a co-coercive operator2

1contractive ⇐⇒ strongly monotone and Lipschitz
2non-expansive ⇐⇒ co-coercive
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Our Framework

• f(x, y) is µ-contractive in x

• ‖f(x1, y)− f(x2, y)‖ ≤ µ‖x1 − x2‖, for all x1, x2, y

• For each y, there exists unique x∗(y) such that f(x∗(y), y) = x∗(y)

• g(x∗(y), y) is non-expansive

• ‖g(x∗(y1), y1)− g(x∗(y2), y2)‖ ≤ ‖y1 − y2‖
• Assume that set of fixed points of g(x∗(·), ·) is non-empty (denote

by Y∗)
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Difference from Literature

Our Framework

• f(x, y) is µ-contractive in x

• g(x∗(y), y) is non-expansive

Other Finite-Time Analysis Works

• f(x, y) and g(x∗(y), y) are contractive in x and y, respectively

• Unique fixed points and solution to f(x∗, y∗) = x∗ and

g(x∗, y∗) = y∗

• Stronger convergence results
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An Interesting Variant



Projected Variant

xk+1 = PX
(
xk + αk(f(xk, yk)− xk +Mk+1)

)
yk+1 = yk + βk(g(xk, yk)− yk +M ′k+1)

• PX : Projection onto X , a convex and bounded set

• PX (x) = arg minx′∈X ‖x− x′‖
• How this setup is different?

• Relevant fixed point is x̂(y), the fixed point for PX (f(·, y))
• PX (f(·, y)) still assumed to be µ-contractive

• Now g(x̂(·), ·) assumed to be non-expansive
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Interesting Scenarios

• Recall that x∗(y) is fixed point for f(·, y) and x̂(y) is fixed point for

PX (f(·, y))

• There exist scenarios where g(x∗(y), y) is contractive, but g(x̂(y), y)

is non-expansive (and not contractive)

• Implication: Faster convergence rate analysis possible in absence of

projection
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Convergence Rates



Assumptions

• Functions f(·, ·) and g(·, ·) are L-Lipschitz

• Mk+1 and M ′k+1 are martingale difference sequences with respect to

Fk = σ(x0, y0,Mi,M
′
i , i ≤ k). Moreover,

E[‖Mk+1‖2 + ‖M ′k+1‖2 | Fk] ≤ c2(1 + ‖xk‖2 + ‖yk‖2), ∀k ≥ 0

• Stepsize Sequences:

αk =
α0

(k + 1)a
and βk =

β0
(k + 1)b

,

where 0.5 < a < b < 1. Importantly,

β2
k

α3
k

≤ 1
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Convergence Rate

Theorem

The iterates satisfy the following:

• E
[
‖xk − x∗(yk)‖2

]
= O (1/(k + 1)a)

• E
[
‖g(x∗(yk), yk)− yk‖2

]
= O

(
1/(k + 1)1−b

)
• ‖xk − x∗(yk)‖ converges to zero, and the iterates yk converge to

the set Y∗ with probability 1.

• Remark: The same result holds for the projected variant as well

(replacing x∗(y) with x̂(y))
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Optimal Rate

• Want to maximize 1− b under the constraints, 0.5 < a < b and

2b ≥ 3a

• Optimal Rate: O
(
1/k0.25−ε

)
, achieved at αk = 1/(k + 1)0.5+2/3ε

and βk = 1/(k + 1)0.75+ε

• Here ε > 0 can be arbitrarily small
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Comparison

Contractive-Nonexpansive Contractive-Contractive3

• E
[
‖xk − x∗(yk)‖2

]
= O

(
1
ka

)
• E

[
‖g(x∗(yk), yk)− yk‖2

]
=

O
(

1
k1−b

)
• Optimal Rate: O

(
1

k0.25−ε

)
• αk = O

(
1

k0.5+2/3ε

)
• βk = O

(
1

k0.75+ε

)

• E
[
‖xk − x∗(yk)‖2

]
= O

(
1
ka

)
• E

[
‖yk − y∗‖2

]
= O

(
1
ka

)
• Optimal Rate: O

(
1
k

)
• αk = O

(
1
k

)
• βk = O

(
1
k

)

3Chandak, Siddharth. ”O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale

Stochastic Approximation.” arXiv:2504.19375 (2025).
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Applications



Linear Stochastic Approximation

• Want to solve A11x+A12y = b1 and A21x+A22y = b2.

• Receive unbiased estimates Ã
(k+1)
ij and b̃

(k+1)
i

xk+1 = xk + αk

(
b̃
(k+1)
1 − Ã(k+1)

11 xk − Ã(k+1)
12 yk

)
yk+1 = yk + βk

(
b̃
(k+1)
2 − Ã(k+1)

21 xk − Ã(k+1)
22 yk

)
.

• Define ∆ = A22 −A21A
−1
11 A12

Corollary

If −A11 is negative definite and −∆ is (non-zero) negative semidefinite,

then

E
[
‖A11x+A12y − b1‖2 + ‖A21x+A22y − b2‖2

]
= O(1/k0.25−ε)
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Strongly Concave-Convex Minimax Optimization

• Minimax Optimization Problem: miny∈Rd2 maxx∈Rd1 H(x, y)

• Two-Time-Scale Stochastic Gradient Descent Ascent (TTSGDA):

xk+1 = xk + αk(∇xH(xk, yk) +Mk+1)

yk+1 = yk + βk(−∇yH(xk, yk) +M ′k+1).

• Define Φ(y) = maxx∈Rd1 H(x, y)

Corollary

If H(x, y) is smooth, strongly concave in x and convex in y, then the

iterates converge to the set of saddle points of H(x, y) a.s., and

E[‖∇Φ(y)‖2] = O(1/k0.25−ε).
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Constrained Optimization

maximize G(x)

subject to:

Hi(x) ≤ 0, i = 1, . . . ,m

Ax = b0.

• X = {x | Hi(x) ≤ 0, i = 1, . . . ,m}
• Ax = b0 represents the additional linear constraint

• Two-time-scale Lagrangian optimization:

xk+1 = PX
(
xk + αk(∇G(xk)−ATλk +Mk+1)

)
λk+1 = λk + βk(Axk − b0).

• Applications:

• Distributed optimization with separate local and global constraints

• Game control or generalized Nash equilibrium problems (GNEP)
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Constrained Optimization

• Scenario where projection leads to non-expansiveness

• Consider no inequality constraints

maximize G(x)

subject to:

((((
(((

((((
(hhhhhhhhhhhh

Hi(x) ≤ 0, i = 1, . . . ,m

Ax = b0.

xk+1 =��HHPX
(
xk + αk(∇G(xk)−ATλk +Mk+1)

)
λk+1 = λk + βk(Axk − b0).

• This is an example of contractive-contractive iterations
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Constrained Optimization

• Coming back to our original constrained problem with the following

two-time-scale iterations:

xk+1 = PX
(
xk + αk(∇G(xk)−ATλk +Mk+1)

)
λk+1 = λk + βk(Axk − b0).

Theorem

For continuously differentiable and convex Hi(·) and if there exists

x ∈ int(X ) such that Ax = b0, then

E[‖Ax̂(λk)− b0‖2] = O(1/k0.25−ε)
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Thank You!
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Thank You!

The talk was primarily based on

• Chandak, Siddharth, ”Non-Expansive Mappings in Two-Time-Scale

Stochastic Approximation: Finite-Time Analysis.” arXiv:2501.10806

(2025).

with some results from

• Chandak, Siddharth, ”O(1/k) Finite-Time Bound for Non-Linear

Two-Time-Scale Stochastic Approximation.” arXiv:2504.19375 (2025).

• Chandak, Siddharth, Ilai Bistritz, and Nicholas Bambos, ”Learning to

Control Unknown Strongly Monotone Games.” arXiv:2407.00575 (2024).
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