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Framework



Two-Time-Scale Iterations

• Coupled iterations updating on separate time-scales

xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

yk+1 = yk + βk(g(xk, yk)− yk +M ′
k+1)

• Want to solve f(x, y) = x and g(x, y) = y given noisy realizations

• Mk+1 and M ′
k+1 are martingale difference noise sequences arising

from noisy observations

• Timescales dictated by the different stepsizes αk and βk
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Two-Time-Scale Iterations

Faster: xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

Slower: yk+1 = yk + βk(g(xk, yk)− yk +M ′
k+1)

• αk is larger, or decays at a slower rate, e.g., 1/n0.6

• βk is smaller, or decays at a faster rate, e.g., 1/n0.75

• Analysis

• Faster time-scale: yk considered quasi-static

• Slower time-scale: xk tracks x∗(yk), the fixed point for f(·, yk)
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Why study two-time-scale iterations?

Many applications:

• Minimax optimization

• Two-time-scale stochastic gradient descent ascent algorithm

• Constrained optimization

• Two-time-scale Lagrangian optimization

• Particularly useful in distributed settings where agents make local

updates with global constraints

• Game Control

• Players update on faster time-scale

• Game manager updates game parameters on slower time-scale

... and obviously more in Reinforcement Learning
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Applications in RL

• SSP Q Learning

• An algorithm for control of average reward MDPs

• Off Policy TD Learning with function approximation

• GTD, TDC, GTD2

• A special case is RL algorithms with Polyak averaging

• The slower timescale is just an averaging step

• Better statistical guarantees
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Key Contractive Assumptions

• There exists 0 ≤ λ < 1 such that,

∥f(x1, y)− f(x2, y)∥ ≤ λ∥x1 − x2∥

for all x1, x2, y

• Unique fixed point x∗(y) for each y, such that f(x∗(y), y) = x∗(y)

• There exists 0 ≤ µ < 1 such that

∥g(x∗(y1), y1)− g(x∗(y2), y2)∥ ≤ µ∥y1 − y2∥

for all y1, y2

• Unique fixed point y∗ such that g(x∗(y∗), y∗) = y∗
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Equivalent Root-finding Formulation

• Consider the following iterations:

xk+1 = xk + αk(f̃(xk, yk) +Mk+1)

yk+1 = yk + βk(g̃(xk, yk) +M ′
k+1)

• Want to solve f̃(x, y) = 0 and g̃(x, y) = 0

• The key assumption now is strong monotonicity1:

• −f̃(·, y) is strongly monotone

• Unique x∗(y) such that f̃(x∗(y), y) = 0

• −g̃(x∗(·), ·) is strongly monotone

1Mapping T (·) is strongly monotone if there exists λ′ > 0 such that

⟨T (x1)− T (x2), x1 − x2⟩ ≥ λ′∥x1 − x2∥2

8



Standard Assumptions

xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

yk+1 = yk + βk(g(xk, yk)− yk +M ′
k+1)

• Functions f(·) and g(·) are Lipschitz in x and y

• Mk+1 and M ′
k+1 are martingale difference sequences. Moreover,

E[∥Mk+1∥2 + ∥M ′
k+1∥2 | Fk] ≤ c1(1 + ∥xk∥2 + ∥yk∥2),

for some c1.
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Prior Works



Mean Square Error Bounds

xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

yk+1 = yk + βk(g(xk, yk)− yk +M ′
k+1)

• Want bounds on:

E
[
∥xk − x∗(yk)∥2

]
and E

[
∥yk − y∗∥2

]
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Stepsize Choices

Faster: xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

Slower: yk+1 = yk + βk(g(xk, yk)− yk +M ′
k+1)

• Can divide prior works into two types based on stepsizes αk and βk

• Case I: limk↑∞ βk/αk = 0

• ‘True’ Time-Scale Separation

• Case II: βk = αk = Θ(1/k)

• Also called ‘single-time-scale analysis of multiple coupled sequences’
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Case I: True Time-Scale Separation

αk =
α

(k +K)a
and βk =

β

k +K
,

where 0 < a < 1.

• For the general non-linear two-time-scale, the previous best bound

was O(1/k2/3) achieved when a = 2/3 [Doan (2023)2]

2T. T. Doan, “Nonlinear two-time-scale stochastic approximation: Convergence and

finite-time performance”, (2023)
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Case II: ‘Single Time-Scale’ Analysis

αk =
α

k +K
and βk =

β

k +K
,

where β/α is sufficiently small.

• No previous bound without additional assumptions

• Under the assumption that x∗(y) is differentiable and smooth, [Shen

and Chen (2022)3] achieve O(1/k)

• By modifying the iteration with additional averaging steps, [Doan

(2024)4] achieve O(1/k)

3H. Shen, and T. Chen, “A Single-Timescale Analysis For Stochastic Approximation

With Multiple Coupled Sequences”, (2022)
4T. T. Doan, “Fast Nonlinear Two-Time-Scale Stochastic Approximation: Achieving

O(1/k) Finite-Sample Complexity”, (2024)
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Our Results



Our Results

We improve the bounds in both cases

Case I: ‘True’ Time-Scale Separation:

• Achieve O(1/ka) where a can be arbitrarily close to one

Case II: ‘Single Time-Scale’ Analysis

• Achieve O(1/k) without any additional assumptions
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Case I

Theorem

Suppose

αk =
α

(k +K)a
and βk =

β

k +K
,

where 0.5 < a < 1 and β,K are sufficiently large. Then,

E[∥xk − x∗(yk)∥2 + ∥yk − y∗∥2] ≤ C

(k +K)a
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Case II

Theorem

Suppose

αk =
α

k +K
and βk =

β

k +K
,

where β/α is sufficiently small and β,K are sufficiently large. Then,

E[∥xk − x∗(yk)∥2 + ∥yk − y∗∥2] ≤ C

k +K
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Key Proof Technique



An Important Observation

• Recall that the previous best bound was O(1/k2/3)

• Observation: The reason for this weaker bound was the way the

noise in the slower time-scale (M ′
k+1) was handled

xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

yk+1 = yk + βk(g(xk, yk)− yk +M ′
k+1)

• In fact, [Chandak et al. (2025)5] obtained O(1/k) in absence of

noise in the slower time-scale

xk+1 = xk + αk(f(xk, yk)− xk +Mk+1)

yk+1 = yk + βk(g(xk, yk)− yk)

• Need to handle M ′
k+1 better

5S. Chandak, S. U. Haque, N. Bambos, “Finite-Time Bounds for Two-Time-Scale

Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise”
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A Simple (but powerful) Technique

• Define an averaged noise sequence and an auxiliary iterate

• Averaged Noise Sequence:

Uk+1 = (1− βk)Uk + βkM
′
k+1, with U0 = 0

• Auxiliary Iterates:

zk = yk − Uk
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Implications: Decay Rate of averaged noise

• Suppose E
[
1 + ∥xi∥2 + ∥yi∥2

]
≤ Γ1 for all i ≤ k − 1 and some Γ1,

then

E
[
∥Um∥2

]
≤ 2c1Γ1βm, ∀m ≤ k.

• The averaged noise sequence decays at a rate of βk

• Will come back later to the the boundedness in expectation
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Implications: An Iterate Easier to Analyze

• The iteration can be rewritten as:

xk+1 = xk + αk(f(xk, zk)− xk +Mk+1 + dk)

zk+1 = zk + βk(g(xk, zk)− zk + ek).

Here, ∥dk∥2 and ∥ek∥2 are both upper bounded by L2∥Uk∥2.
• Will now study E

[
∥xk − x∗(zk)∥2

]
and E

[
∥zk − y∗∥2

]
• The noise in slower time-scale is now ek, and E[∥ek∥2] decays at a
rate of βk
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Implications: Going Back to Original Iterates

• Bound on original iterates directly follows from bound on auxiliary

iterates

E
[
∥xk − x∗(yk)∥2 + ∥yk − y∗∥2

]
≤ 2E

[
∥xk − x∗(zk)∥2 + ∥zk − y∗∥2

]
+ C1E

[
∥Uk∥2

]
.
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Boundedness in Expecation

• Recall: Suppose E
[
1 + ∥xi∥2 + ∥yi∥2

]
≤ Γ1 for all i ≤ k − 1 and

some Γ1, then

E
[
∥Um∥2

]
≤ 2c1Γ1βm, ∀m ≤ k.

• Induction-based approach -

• Choose approrpiate Γ2

• Base Case: Iterates bounded by Γ2 at time k = 0

• Suppose iterates bounded in expectation by Γ2 at time k − 1

• Implies required bounds hold at time k

• Implies iterates bounded in expectation by Γ2 at time k
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Why did I call the technique powerful?

This simple proof technique can be used in many settings

• Easy to extend to other noise sequences, e.g., Markov noise

• Expectation Bounds for SA under arbitrary norm contractions

• Directly use ∥xk − x∗∥ as the Lyapunov function

• Sub-Gaussian concentration bounds for SA with Markov noise

• A key step in obtaining last-iterate bounds for non-expansive SA
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Open Questions



Better Bounds in Linear SA

• When the functions f and g are linear:

E[∥xk − x∗(yk)∥2] =
C

(k +K)a
and E[∥yk − y∗∥2] = C

(k +K)
,

is achieved when

αk =
α

(k +K)a
and

β

k +K
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Extending to non-linear SA?

• A recent work [Han et al. (2024)6] obtain the same rate for

non-linear SA but under the assumption of local linearity

• Local linearity allows them to use the same kind of techniques as

used in linear SA

• Also give empirical evidence that local linearity is necessary to

achieve this

6Y. Han, X. Li, Z. Zhang, “Finite-Time Decoupled Convergence in Nonlinear

Two-Time-Scale Stochastic Approximation”, (2024)
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Thank You!
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Thank You!

The talk was based on

• Chandak, Siddharth,“O(1/k) Finite-Time Bound for Non-Linear

Two-Time-Scale Stochastic Approximation.” arXiv:2504.19375 (2025).
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