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Framework



Two-Time-Scale lterations

Coupled iterations updating on separate time-scales

Try1 = T + o (f(@r, Yr) — T + Mig1)

Yk+1 = Uk + Be(9(@k, k) — ye + Mi 1)

Want to solve f(x,y) =« and g(x,y) = y given noisy realizations

My, 41 and M, are martingale difference noise sequences arising
from noisy observations

e Timescales dictated by the different stepsizes ay, and



Two-Time-Scale lterations

Faster: xp41 = xp + ar(f(zr, yr) — 2k + Mii1)

Slower: yr+1 = Yk + Br(9(r, Yx) — Yx + My 1)

e (. is larger, or decays at a slower rate, e.g., l/no'6

e [3; is smaller, or decays at a faster rate, e.g., 1/n% 7

e Analysis

e Faster time-scale: yi considered quasi-static
e Slower time-scale: z, tracks 2" (yx), the fixed point for f(-,yx)



Why study two-time-scale iterations?

Many applications:

e Minimax optimization
e Two-time-scale stochastic gradient descent ascent algorithm
e Constrained optimization

e Two-time-scale Lagrangian optimization
e Particularly useful in distributed settings where agents make local
updates with global constraints

e Game Control

e Players update on faster time-scale
e Game manager updates game parameters on slower time-scale

. and obviously more in Reinforcement Learning



Applications in RL

e SSP Q Learning
e An algorithm for control of average reward MDPs

e Off Policy TD Learning with function approximation
e GTD, TDC, GTD2

e A special case is RL algorithms with Polyak averaging

e The slower timescale is just an averaging step
e Better statistical guarantees



Key Contractive Assumptions

e There exists 0 < \ < 1 such that,

1f(z1,y) = fz2, )l < Allz1 — 22|

for all x1, 22,y

e Unique fixed point z*(y) for each y, such that f(z*(y),y) = =" (y)
e There exists 0 < p < 1 such that

llg(z*(y1),y1) — g(z*(y2), y2)ll < pllyr — vl

for all y1,yo
e Unique fixed point y* such that g(z*(y*),y") =y

*



Equivalent Root-finding Formulation

e Consider the following iterations:

Thy1 = T + ar(f(r, Yr) + Miy1)
Ykt1 = Uk + Be(G(@k, yk) + Mi 1)

e Want to solve f(x,y) =0 and g(z,y) =0
e The key assumption now is strong monotonicity®:

e —f(-,y) is strongly monotone
e Unique z*(y) such that f(x*(y),y) =0
e —g(x*(-),-) is strongly monotone

Mapping T(-) is strongly monotone if there exists \’ > 0 such that
(T(x1) = T(z2), 21 — 22) > N|lz1 — 22



Standard Assumptions

Try1 = T + o (f(Tr, yk) — Tk + Mi41)

Yk+1 = Uk + Be(9(@k, k) — Y + M4 1)

e Functions f(-) and g(-) are Lipschitz in = and y
® M1 and M, are martingale difference sequences. Moreover,

E| Mt |® + [1Me 7 | Fel < ex(X+ llzall® + llyel®),

for some ¢;.



Prior Works




Mean Square Error Bounds

Try1 = Tp + o (f(Tr, Y) — To + My 1)

Yk+1 = Uk + Be(9(@k, k) — Y + M4 1)

e Want bounds on:

E [|ler — z*(y)[I’] and E [[lye — y*[|]
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Stepsize Choices

Faster: xp41 =z + ar(f(ak, yr) — Tp + Miy1)

Slower: Y41 = Yk + Be(9(@k, yk) — Y + My 1)

e Can divide prior works into two types based on stepsizes ay, and [
e Case I: limyq4o S/ =0

e ‘True' Time-Scale Separation
e Case ll: 8, = ay, = O(1/k)

e Also called ‘single-time-scale analysis of multiple coupled sequences’
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Case I: True Time-Scale Separation

a
ap = T E® and [ = P

where 0 < a < 1.

e For the general non-linear two-time-scale, the previous best bound
was O(1/k?/3) achieved when a = 2/3 [Doan (2023)?]

2T. T. Doan, “Nonlinear two-time-scale stochastic approximation: Convergence and
finite-time performance”, (2023)
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Case Il: ‘Single Time-Scale’ Analysis

and By = —P—

A K+ K

o«
Ck+ K
where 3/« is sufficiently small.

e No previous bound without additional assumptions

e Under the assumption that 2*(y) is differentiable and smooth, [Shen
and Chen (2022)3] achieve O(1/k)

e By modifying the iteration with additional averaging steps, [Doan
(2024)*] achieve O(1/k)

3H. Shen, and T. Chen, “A Single-Timescale Analysis For Stochastic Approximation
With Multiple Coupled Sequences”, (2022)
4T. T. Doan, “Fast Nonlinear Two-Time-Scale Stochastic Approximation: Achieving
O(1/k) Finite-Sample Complexity”, (2024)
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Our Results




Our Results

We improve the bounds in both cases

Case I: ‘True' Time-Scale Separation:
o Achieve O(1/k®) where @ can be arbitrarily close to one
Case IlI: ‘Single Time-Scale’ Analysis

e Achieve O(1/k) without any additional assumptions
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Case |

Theorem
Suppose
o p
ap = —>— and = —
P k+ K)e be=pik
where 0.5 < a < 1 and 3, K are sufficiently large. Then,

C

Elllzr — z* (we)I* + llye — v*[17] < 1R
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Case Il

Theorem
Suppose
o B
= d = —

%=y AR

where 3/« is sufficiently small and 5, K are sufficiently large. Then,
Ellles — o @)l + s~ v°I1) <
T kE+K
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Key Proof Technique




An Important Observation

e Recall that the previous best bound was O(1/k%/3)

e Observation: The reason for this weaker bound was the way the
noise in the slower time-scale (M}, ;) was handled

Tp1 = Tk + ap(f(Tr, yr) — Tk + Mit1)
Yk+1 = Yk + Be(9(@k, yk) — Y + My, 1)

e In fact, [Chandak et al. (2025)°] obtained O(1/k) in absence of
noise in the slower time-scale

Try1 = T + o (f(@r, Yr) — T + Mig1)

Yk+1 = Yr + Br(9(@k, yr) — Yr)

e Need to handle M, , better

5S. Chandak, S. U. Haque, N. Bambos, “Finite-Time Bounds for Two-Time-Scale
Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise”
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A Simple (but powerful) Technique

e Define an averaged noise sequence and an auxiliary iterate

e Averaged Noise Sequence:
Uk+1 = (1 — ﬂk)Uk SIS ﬁkM]Q+1, with Uy =0

e Auxiliary Iterates:
2k =y — Uk
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Implications: Decay Rate of averaged noise

e Suppose E [1 + ||z;||> + [|y:]|?] < T1 for all i <k —1 and some I'y,

then
E [||U7n||2] S 2C1F1ﬁmv Vm S k

e The averaged noise sequence decays at a rate of

e Will come back later to the the boundedness in expectation
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Implications: An lterate Easier to Analyze

e The iteration can be rewritten as:

Thr1 = Tk + ok (f(Tk, 2) — Tk + Mit1 + di)
Zi+1 = 2k + Bi(9(Tr, 26) — 2k + ex).
Here, ||dy||? and |lex||? are both upper bounded by L?||Uy||?.
e Will now study E [||lz, — 2*(z) ] and E [||z — y*||?]

e The noise in slower time-scale is now e, and E[||e||?] decays at a
rate of [
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Implications: Going Back to Original Iterates

e Bound on original iterates directly follows from bound on auxiliary
iterates

E [llex — «*(we)I” + lye — v 117
< 2E [||lzx — z* ()12 + llze — v*)|?] + C1E [||UK]?] -
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Boundedness in Expecation

e Recall: Suppose E [1+ ||z;]|? + [|;|?] < Ty foralli <k —1 and
some I'q, then

E [|Un|?] < 26171 Bm, ¥Ym < k.

e Induction-based approach -

e Choose approrpiate I's
Base Case: lterates bounded by I's at time k =0

Suppose iterates bounded in expectation by I's at time k — 1

Implies required bounds hold at time k

Implies iterates bounded in expectation by I'y at time &



Why did | call the technique powerful?

This simple proof technique can be used in many settings

e Easy to extend to other noise sequences, e.g., Markov noise
e Expectation Bounds for SA under arbitrary norm contractions

e Directly use ||zr — x*|| as the Lyapunov function
e Sub-Gaussian concentration bounds for SA with Markov noise

e A key step in obtaining last-iterate bounds for non-expansive SA
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Open Questions




Better Bounds in Linear SA

e When the functions f and g are linear:

Elllzr — «*(ye) %] = and Ef||yx — y*[I’] =

(k+ K)
is achieved when

k= o _—

ktK)@ " kr K

(k+K)’
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Extending to non-linear SA?

e A recent work [Han et al. (2024)°] obtain the same rate for
non-linear SA but under the assumption of local linearity
e Local linearity allows them to use the same kind of techniques as

used in linear SA

e Also give empirical evidence that local linearity is necessary to
achieve this

6Y. Han, X. Li, Z. Zhang, “Finite-Time Decoupled Convergence in Nonlinear
Two-Time-Scale Stochastic Approximation”, (2024)

25



Thank You!



Thank You!

The talk was based on

e Chandak, Siddharth, “O(1/k) Finite-Time Bound for Non-Linear
Two-Time-Scale Stochastic Approximation.” arXiv:2504.19375 (2025).
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