

O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation

Siddharth Chandak

October 27, 2025

Department of Electrical Engineering, Stanford University

Outline

- Framework
- Prior Works
- Our Result
- Key Proof Technique
- Open Question

Framework

Two-Time-Scale Iterations

• Coupled iterations updating on separate time-scales

$$x_{k+1} = x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k + M'_{k+1})$$

- Want to solve f(x,y) = x and g(x,y) = y given noisy realizations
- M_{k+1} and M'_{k+1} are martingale difference noise sequences arising from noisy observations
- ullet Timescales dictated by the different stepsizes $lpha_k$ and eta_k

Two-Time-Scale Iterations

Faster:
$$x_{k+1}=x_k+\alpha_k(f(x_k,y_k)-x_k+M_{k+1})$$
 Slower:
$$y_{k+1}=y_k+\beta_k(g(x_k,y_k)-y_k+M_{k+1}')$$

- α_k is larger, or decays at a slower rate, e.g., $1/n^{0.6}$
- ullet eta_k is smaller, or decays at a faster rate, e.g., $1/n^{0.75}$
- Analysis
 - Faster time-scale: y_k considered quasi-static
 - Slower time-scale: x_k tracks $x^*(y_k)$, the fixed point for $f(\cdot,y_k)$

Why study two-time-scale iterations?

Many applications:

- Minimax optimization
 - Two-time-scale stochastic gradient descent ascent algorithm
- Constrained optimization
 - Two-time-scale Lagrangian optimization
 - Particularly useful in distributed settings where agents make local updates with global constraints
- Game Control
 - Players update on faster time-scale
 - Game manager updates game parameters on slower time-scale

... and obviously more in Reinforcement Learning

Applications in RL

- SSP Q Learning
 - An algorithm for control of average reward MDPs
- Off Policy TD Learning with function approximation
 - GTD, TDC, GTD2
- A special case is RL algorithms with Polyak averaging
 - The slower timescale is just an averaging step
 - Better statistical guarantees

Key Contractive Assumptions

• There exists $0 \le \lambda < 1$ such that,

$$||f(x_1, y) - f(x_2, y)|| \le \lambda ||x_1 - x_2||$$

for all x_1, x_2, y

- Unique fixed point $x^*(y)$ for each y, such that $f(x^*(y),y)=x^*(y)$
- There exists $0 \le \mu < 1$ such that

$$||g(x^*(y_1), y_1) - g(x^*(y_2), y_2)|| \le \mu ||y_1 - y_2||$$

for all y_1, y_2

 \bullet Unique fixed point y^* such that $g(x^*(y^*),y^*)=y^*$

7

Equivalent Root-finding Formulation

• Consider the following iterations:

$$x_{k+1} = x_k + \alpha_k(\tilde{f}(x_k, y_k) + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k(\tilde{g}(x_k, y_k) + M'_{k+1})$$

- $\bullet \ \ \text{Want to solve} \ \tilde{f}(x,y)=0 \ \text{and} \ \tilde{g}(x,y)=0$
- The key assumption now is strong monotonicity¹:
 - $-\tilde{f}(\cdot,y)$ is strongly monotone
 - Unique $x^*(y)$ such that $\tilde{f}(x^*(y),y)=0$
 - $-\tilde{g}(x^*(\cdot),\cdot)$ is strongly monotone

 $^{^1 \}text{Mapping } T(\cdot)$ is strongly monotone if there exists $\lambda'>0$ such that $\langle T(x_1)-T(x_2),x_1-x_2\rangle \geq \lambda'\|x_1-x_2\|^2$

Standard Assumptions

$$x_{k+1} = x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k + M'_{k+1})$$

- ullet Functions $f(\cdot)$ and $g(\cdot)$ are Lipschitz in x and y
- ullet M_{k+1} and M_{k+1}^{\prime} are martingale difference sequences. Moreover,

$$\mathbb{E}[\|M_{k+1}\|^2 + \|M'_{k+1}\|^2 \mid \mathcal{F}_k] \le \mathfrak{c}_1(1 + \|x_k\|^2 + \|y_k\|^2),$$

for some \mathfrak{c}_1 .

Prior Works

Mean Square Error Bounds

$$x_{k+1} = x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k + M'_{k+1})$$

• Want bounds on:

$$\mathbb{E}\left[\|x_k - x^*(y_k)\|^2\right] \text{ and } \mathbb{E}\left[\|y_k - y^*\|^2\right]$$

Stepsize Choices

Faster:
$$x_{k+1}=x_k+\alpha_k(f(x_k,y_k)-x_k+M_{k+1})$$
 Slower:
$$y_{k+1}=y_k+\beta_k(g(x_k,y_k)-y_k+M_{k+1}')$$

- ullet Can divide prior works into two types based on stepsizes $lpha_k$ and eta_k
- Case I: $\lim_{k \uparrow \infty} \beta_k / \alpha_k = 0$
 - 'True' Time-Scale Separation
- Case II: $\beta_k = \alpha_k = \Theta(1/k)$
 - Also called 'single-time-scale analysis of multiple coupled sequences'

Case I: True Time-Scale Separation

$$\alpha_k = \frac{\alpha}{(k+K)^a} \text{ and } \beta_k = \frac{\beta}{k+K},$$

where 0 < a < 1.

• For the general non-linear two-time-scale, the previous best bound was $\mathcal{O}(1/k^{2/3})$ achieved when a=2/3 [Doan (2023)²]

²T. T. Doan, "Nonlinear two-time-scale stochastic approximation: Convergence and finite-time performance", (2023)

Case II: 'Single Time-Scale' Analysis

$$\alpha_k = \frac{\alpha}{k+K} \text{ and } \beta_k = \frac{\beta}{k+K},$$

where β/α is sufficiently small.

- No previous bound without additional assumptions
- Under the assumption that $x^*(y)$ is differentiable and smooth, [Shen and Chen (2022)³] achieve $\mathcal{O}(1/k)$
- By modifying the iteration with additional averaging steps, [Doan $(2024)^4$] achieve $\mathcal{O}(1/k)$

³H. Shen, and T. Chen, "A Single-Timescale Analysis For Stochastic Approximation With Multiple Coupled Sequences", (2022)

 $^{^4\}mathsf{T}.$ T. Doan, "Fast Nonlinear Two-Time-Scale Stochastic Approximation: Achieving O(1/k) Finite-Sample Complexity", (2024)

Our Results

Our Results

We improve the bounds in both cases

Case I: 'True' Time-Scale Separation:

 \bullet Achieve $\mathcal{O}(1/k^a)$ where a can be arbitrarily close to one

Case II: 'Single Time-Scale' Analysis

ullet Achieve $\mathcal{O}(1/k)$ without any additional assumptions

Case I

Theorem

Suppose

$$\alpha_k = \frac{\alpha}{(k+K)^a} \text{ and } \beta_k = \frac{\beta}{k+K},$$

where 0.5 < a < 1 and β, K are sufficiently large. Then,

$$\mathbb{E}[\|x_k - x^*(y_k)\|^2 + \|y_k - y^*\|^2] \le \frac{C}{(k+K)^a}$$

Case II

Theorem

Suppose

$$\alpha_k = \frac{\alpha}{k+K} \text{ and } \beta_k = \frac{\beta}{k+K},$$

where β/α is sufficiently small and β,K are sufficiently large. Then,

$$\mathbb{E}[\|x_k - x^*(y_k)\|^2 + \|y_k - y^*\|^2] \le \frac{C}{k + K}$$

Key Proof Technique

An Important Observation

- ullet Recall that the previous best bound was $\mathcal{O}(1/k^{2/3})$
- Observation: The reason for this weaker bound was the way the noise in the slower time-scale (M_{k+1}^\prime) was handled

$$x_{k+1} = x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k + M'_{k+1})$$

• In fact, [Chandak et al. $(2025)^5$] obtained $\mathcal{O}(1/k)$ in absence of noise in the slower time-scale

$$x_{k+1} = x_k + \alpha_k (f(x_k, y_k) - x_k + M_{k+1})$$

$$y_{k+1} = y_k + \beta_k (g(x_k, y_k) - y_k)$$

 $\bullet \ \ {\rm Need \ to \ handle} \ M'_{k+1} \ \ {\rm better}$

⁵S. Chandak, S. U. Haque, N. Bambos, "Finite-Time Bounds for Two-Time-Scale Stochastic Approximation with Arbitrary Norm Contractions and Markovian Noise"

A Simple (but powerful) Technique

- Define an averaged noise sequence and an auxiliary iterate
- Averaged Noise Sequence:

$$U_{k+1} = (1 - \beta_k)U_k + \beta_k M'_{k+1}$$
, with $U_0 = 0$

Auxiliary Iterates:

$$z_k = y_k - U_k$$

Implications: Decay Rate of averaged noise

• Suppose $\mathbb{E}\left[1+\|x_i\|^2+\|y_i\|^2\right]\leq \Gamma_1$ for all $i\leq k-1$ and some Γ_1 , then

$$\mathbb{E}\left[\|U_m\|^2\right] \le 2\mathfrak{c}_1\Gamma_1\underline{\beta_m}, \ \forall m \le k.$$

- The averaged noise sequence decays at a rate of β_k
- Will come back later to the the boundedness in expectation

Implications: An Iterate Easier to Analyze

• The iteration can be rewritten as:

$$x_{k+1} = x_k + \alpha_k (f(x_k, z_k) - x_k + M_{k+1} + d_k)$$

$$z_{k+1} = z_k + \beta_k (g(x_k, z_k) - z_k + e_k).$$

Here, $||d_k||^2$ and $||e_k||^2$ are both upper bounded by $L^2||U_k||^2$.

- ullet Will now study $\mathbb{E}\left[\|x_k-x^*(z_k)\|^2
 ight]$ and $\mathbb{E}\left[\|z_k-y^*\|^2
 ight]$
- \bullet The noise in slower time-scale is now e_k , and $\mathbb{E}[\|e_k\|^2]$ decays at a rate of β_k

Implications: Going Back to Original Iterates

Bound on original iterates directly follows from bound on auxiliary iterates

$$\mathbb{E}\left[\|x_k - x^*(y_k)\|^2 + \|y_k - y^*\|^2\right]$$

$$\leq 2\mathbb{E}\left[\|x_k - x^*(z_k)\|^2 + \|z_k - y^*\|^2\right] + C_1\mathbb{E}\left[\|U_k\|^2\right].$$

Boundedness in Expecation

• Recall: Suppose $\mathbb{E}\left[1+\|x_i\|^2+\|y_i\|^2\right]\leq \Gamma_1$ for all $i\leq k-1$ and some Γ_1 , then

$$\mathbb{E}\left[\|U_m\|^2\right] \le 2\mathfrak{c}_1\Gamma_1\beta_m, \ \forall m \le k.$$

- Induction-based approach -
 - Choose approrpiate Γ_2
 - Base Case: Iterates bounded by Γ_2 at time k=0
 - ullet Suppose iterates bounded in expectation by Γ_2 at time k-1
 - ullet Implies required bounds hold at time k
 - ullet Implies iterates bounded in expectation by Γ_2 at time k

Why did I call the technique powerful?

This simple proof technique can be used in many settings

- Easy to extend to other noise sequences, e.g., Markov noise
- Expectation Bounds for SA under arbitrary norm contractions
 - Directly use $||x_k x^*||$ as the Lyapunov function
- Sub-Gaussian concentration bounds for SA with Markov noise
- A key step in obtaining last-iterate bounds for non-expansive SA

Open Questions

Better Bounds in Linear SA

• When the functions f and g are linear:

$$\mathbb{E}[\|x_k - x^*(y_k)\|^2] = \frac{C}{(k+K)^a} \text{ and } \mathbb{E}[\|y_k - y^*\|^2] = \frac{C}{(k+K)},$$

is achieved when

$$\alpha_k = \frac{\alpha}{(k+K)^a} \text{ and } \frac{\beta}{k+K}$$

Extending to non-linear SA?

- A recent work [Han et al. (2024)⁶] obtain the same rate for non-linear SA but under the assumption of local linearity
 - Local linearity allows them to use the same kind of techniques as used in linear SA
- Also give empirical evidence that local linearity is necessary to achieve this

⁶Y. Han, X. Li, Z. Zhang, "Finite-Time Decoupled Convergence in Nonlinear Two-Time-Scale Stochastic Approximation", (2024)

Thank You!

Thank You!

The talk was based on

• Chandak, Siddharth, "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation." arXiv:2504.19375 (2025).