Tiered Service Architecture for Remote Patient Monitoring

Siddharth Chandak¹, **Isha Thapa**², Nicholas Bambos^{1,2}, David Scheinker^{2,3}

1. Electrical Engineering, Stanford University, 2. Management Science and Engineering, Stanford University, 3. Pediatric Endo crinology, Stanford School of Medicine

Outline

1

Background and Motivation

2

Service Architecture

3

Optimal Policy

Technology enabled healthcare

Images created using OpenAl's DALL-E 3 model. Prahalad et al. (2024). Nature Medicine, 1-9., Masoumian Hosseini et al. (2023). BMC Medical Informatics and Decision Making, 23(1), 248., Zinzuwadia et al. (2023). In Emerging Practices in Telehealth (pp. 97-115). Academic Press.

Continuous Glucose Monitors

Smartwatches

Implantable Devices

Images created using OpenAl's DALL-E 3 model. Prahalad et al. (2024). Nature Medicine, 1-9., Masoumian Hosseini et al. (2023). BMC Medical Informatics and Decision Making, 23(1), 248., Zinzuwadia et al. (2023). In Emerging Practices in Telehealth (pp. 97-115). Academic Press.

Ordinary

Intensive

\$\$\$

Critical State

\$\$\$\$\$\$\$\$\$\$

Tiered Service Architecture

The Model

- Controlled Markov Chain
- Time period: $t \in \{0,1,2...\}$
- Health states: $h_t \in \{0,1,2...H\}$
 - Critical State: $h_T = 0$

The Model

- Controlled Markov Chain
- Time period: $t \in \{0,1,2...\}$
- Health states: $h_t \in \{0,1,2 ... H\}$
- Monitoring state: $m_t \in M = \{o, i\}$
- Overall State: $s_t := (m_t, h_t)$
- Action: $a_t \in A = \{o, i\}$
- Costs: C_o , C_i , C_c
- Transition Costs

Optimal Control

- Policy $\pi(s)$
- Value function $V_{\pi}(s)$

$$V_{\pi}(s) = \mathbb{E}\left[\sum_{t=0}^{T} \gamma^{t} c(s_{t}, a_{t}) + \gamma^{T} C_{c} \mid s_{0} = s\right]$$

Optimal Control

• Want optimal policy π^* that minimizes V_{π}

$$V_{\pi}^{*}(s) = \min_{a \in \{o,i\}} \left\{ c(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V_{\pi}^{*}(s') \right\}$$

Assumptions

- The transition probabilities satisfy: $\lambda_i \geq \lambda_o$
- The costs satisfy: $0 \le C_o \le C_i << C_c$

Ordinary monitoring

$$\lambda_{o} = .2, \lambda_{i} = .3, C_{c} = 20, C_{i} = 1, C_{o} = 0, \gamma = .9$$

Theorem 1. Policy π_o is optimal when

$$\gamma(\lambda_i - \lambda_o)(1 - \phi^2) \le C_i/C_c$$

$$\lambda_{o} = .2, \lambda_{i} = .3, C_{c} = 20, C_{i} = 1, C_{o} = 0, \gamma = .9$$

 Ordinary monitoring above threshold

$$\lambda_{o} = .2, \lambda_{i} = .3, C_{c} = 60, C_{i} = 1, C_{o} = 0, \gamma = .9$$

Stanford University

Theorem 2. Policy $\pi_{t,\bar{h}}$ is optimal for some threshold \bar{h} when:

$$\gamma(\lambda_i - \lambda_o)(1 - \phi^2) > C_i/C_c$$

$$\frac{\gamma\mu_o(1 + \gamma\mu_o)}{1 - \gamma^2\lambda_o\mu_o} \le 1$$

$$\lambda_{o} = .2, \lambda_{i} = .3, C_{c} = 60, C_{i} = 1, C_{o} = 0, \gamma = .9$$

- Optimal policy is a threshold policy
 - 1. Ordinary monitoring only
 - 2. Intensive monitoring below some health state threshold

Varying Parameters

 $\lambda_o = .2, \lambda_i = .4, C_i = 1, C_o = 0, \gamma = .9$

Varying λ_i

$$\lambda_o = .2$$
, $C_c = 50$, $C_i = 1$, $C_o = 0$, $\gamma = .9$

Conclusion

- Develop tiered monitoring system
- Theoretical and numerical results for tier assignments
- Identify threshold policy
- Extensions
 - Multidimensional health states
 - State varying parameters

Thank You

Appendix

- Assumptions for theoretical results
 - The number of health states is very large $(H \rightarrow \infty)$
 - Under ordinary monitoring, health drifts downwards

$$\lambda_o < .5, \ \mu_o > .5$$

Appendix

Asymptotic results closely approximate numerical results

Stanford University 25

Appendix

- Intensive monitoring only
 - Extreme cases when H is very small or gamma close to 1