

Optimal Control for Remote Patient Monitoring with Multidimensional Health States

Siddharth Chandak¹, Isha Thapa², Nicholas Bambos^{1,2}, David Scheinker^{2,3}

^{1.} Electrical Engineering, Stanford University, 2. Management Science and Engineering, Stanford University, 3. Pediatric Endocrinology, Stanford School of Medicine

Outline

1 Background and Motivation

2 Service Architecture

3 Optimal Policy

Technology enabled healthcare

Continuous Glucose Monitors

Smartwatches

Implantable Devices

Images created using OpenAl's DALL-E 3 model. Prahalad et al. (2024). Nature Medicine, 1-9., Masoumian Hosseini et al. (2023). BMC Medical Informatics and Decision Making, 23(1), 248., Zinzuwadia et al. (2023). In Emerging Practices in Telehealth (pp. 97-115). Academic Press.

Ordinary

Intensive

\$\$\$

Critical State

\$\$\$\$\$\$\$\$\$\$

Tiered Service Architecture

Multidimensional Health State

- Multidimensional health states: $\mathbf{h} = (h^{(1)}, h^{(2)}, \dots, h^{(n)})$
 - $h^{(i)} \in \{0,1,...,H\}$
 - *n* different health measurements
 - "Higher" health state ⇒ Better health
- For better visualization, we work with 2 states
 - $h = (h^{(x)}, h^{(y)})$
- Set of critical health states $\mathcal{H}_C = \{ \boldsymbol{h} \mid g(\boldsymbol{h}) \leq c \}$
 - Health falls below certain threshold
 - Examples:
 - · Both measurements are zero
 - Either measurement is zero

Markovian Model

- Markov Decision Process
- Time period: $t \in \{0,1,2...\}$
- Health states: $h_t = (h_t^{(x)}, h_t^{(y)})$
- Monitoring States: $m_t \in \{o, i\}$
 - o: Ordinary Monitoring
 - *i*: Intensive Monitoring
- Overall State: $s_t = (h_t, m_t)$
- Action/Control: $a_t \in \{o, i\}$
- Costs: C_o , C_i , C_c
- Evolution stops when a critical health state is reached

One-Dimensional Model¹ Multidimensional Model

• 1S. Chandak, I. Thapa, N. Bambos, D. Schienker, "Tiered Service Architecture for Remote Patient Monitoring", IEEE Healthcom 2024

Assumptions

- The transition probabilities satisfy:
 - $\lambda_{i,x} \geq \lambda_{o,x}$
 - $\lambda_{i,y} \geq \lambda_{o,y}$
- The costs satisfy:
 - $0 \le C_0 \le C_i << C_c$

Optimal Policy

Optimal Control

Value Function

$$V^*(s) = \min_{a \in \{o,i\}} \left\{ c(s,a) + \gamma \sum_{s' \in S} P(s'|s,a)V^*(s') \right\}$$

Optimal Policy

$$\pi^{*}(s) = \underset{a \in \{o,i\}}{\operatorname{argmin}} \left\{ c(s,a) + \gamma \sum_{s' \in S} P(s'|s,a) V^{*}(s') \right\}$$

Intuition from One-Dimensional Model¹

- Threshold-based policy
 - When $h > \bar{h}$:
 - Ordinary Monitoring
 - When $h \leq \bar{h}$:
 - Intensive Monitoring
- Proof Technique:
 - Moment Generating Function (MGF) of the hitting time of critical health state

 ¹S. Chandak, I. Thapa, N. Bambos, D. Schienker, "Tiered Service Architecture for Remote Patient Monitoring", IEEE Healthcom 2024

Switching Curve Policies

- Set of critical health states $\mathcal{H}_{\mathcal{C}} = \{ h \mid g(h) \leq c \}$
- Optimal Policy characterized by some function $f(\cdot):\mathcal{H}\mapsto\mathbb{R}$
 - If $f(h) \le 0$: Intensive Monitoring
 - If f(h) > 0: Ordinary Monitoring
- $f(\mathbf{h}) = 0$ is the Switching Curve
- Same intuition as before:
 - Shape of switching curve dictated by the hitting time

Stanford University

17

Conclusion

- Tiered monitoring system with multidimensional health states
- Policies based on Switching Curves
- Extensions
 - Learning
 - Non-Markovian model

Thank You

Email: chandaks@stanford.edu