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Overview



Multi-Agent Systems
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Multi-Agent Games

• Game with N agents

• Each player n takes action xn

• Utility (Reward): un(x1, . . . ,xN )
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Local Objective

• Local Objective: Each player n wants to maximize their reward

un(x1, . . . ,xN )

• Constraints:

• Distributed System

• Bandit Feedback

• Limited Communication
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Constraints: Distributed System

Distributed Centralized
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Constraints: Bandit Feedback
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Constraints: Limited Communication
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Solution Concept - Nash Equilibrium

• Nash Equilibrium: Action profile x∗1, . . . ,x
∗
N is called a Nash

equilibrium if:

un(x∗1, . . . ,x
∗
n, . . . ,x

∗
N ) ≥ un(x∗1, . . . ,x

′
n, . . . ,x

∗
N ),

for all players n and action x′n.

• No benefit by unilateral deviation - no player can get a better reward

if only they change their action
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Example of Nash Equilibrium

Firm 2

Firm 1

Advertise Don’t Advertise

Advertise (2, 2) (6, 0)

Don’t Advertise (0, 6) (4, 4)

• Each box represents profit (in $) obtained by Firm 1 and Firm 2,

respectively, under each strategy profile

• Cost of advertising = $2

• Total possible sales = $8
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Example of Nash Equilibrium

Firm 2

Firm 1

Advertise Don’t Advertise

Advertise (2,2) (6, 0)

Don’t Advertise (0, 6) (4, 4)

• Nash Equilibrium is where both firms advertise
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Convergence to NE

• Players converge to NE using gradient ascent on their rewards12

• Completely distributed

• Each player needs to know only their reward at each time

• No communication between players

• If each player slowly changes their action to increase their reward,

then the system eventually converges to a NE

1recall that we are working with games with continuous actions
2for a class of games called monotone games
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NE - good or bad?

• A Nash equilibrium is not always desirable

• Issues:

• Inequality

• Inefficiency - Braess’ Paradox

• Operation Issues - Resource Allocation Games
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Braess’ Paradox

• 20 cars want to go from START to END

• At NE, cars are equally distributed in the two symmetric routes (top

and bottom)
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Braess’ Paradox

• Adding an additional zero-delay road between A to B causes longer

delays for every player at NE
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Resource Allocation Games

• K resources

• Each player’s action is K−dimensional, where the kth dimension

represents the amount of kth resource they use

• Example: electricity grids and wireless channels

• At NE - often a few resources are heavily used, creating pressure on

system

Hour 1 Hour 2 · · · Hour 24

Player 1 250 W 1000 W · · · 100 W

Player 2 150 W 800 W · · · 50 W
...

...
...

...

Player N 400 W 1500 W · · · 0 W
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Game Control



Game Parameters

• Game or multi-agent system is controlled by parameter or policy α

• Examples -

• Toll on each road

• Price of each resource,

• Roads or resources available to each player

• Utility for each player n : un(x, α)

• NE corresponding to α : x∗(α) = (x∗1(α), . . . ,x∗N (α))

• Consider α ∈ A where A is a discrete and finite set
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Global Objective

• Global reward - g(x)

• Problem specific

• Sum of rewards

• Minimum reward

• Function of usage of each resource

• Global Objective: Obtain parameter α which maximizes global

reward at equilibrium, i.e., find α∗ such that α∗ maximizes g(x∗(α)).
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Global Objective
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Problem Formulation

• At time t, manager sets parameter α(t)

• Each player n observes un(x(t), α(t))

• Each player updates their action using gradient ascent on reward

un(x(t), α(t)) to obtain xn(t+ 1)

• Manager observes g(xn(t+ 1)) and updates parameter
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Equilibrium Bandits



Challenge

• Cannot switch at every step

• Manager observes only g(x(t))

• Learns very little about reward at equilibrium g(x∗(α))
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Naive Algorithm

• Manager tries each policy for a fixed number of consecutive steps

ttry, and chooses the best policy based on the final global reward

• Gives some time to converge

• What should ttry be set as?

• What if too small?

• What if too large?
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Challenge

• Eventually converges - how to know when?

• Want to determine if the NE for a policy will be desirable without

waiting for convergence
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Idea: Convergence Bound

• If parameter at time t was α, then3

‖x(t+ 1)− x∗(α)‖ ≤ exp

(
−1

τc

)
‖x(t)− x∗(α)‖

• τc : Approximate time to convergence

3Holds for a class of games known as strongly monotone games
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Idea: Convergence Bound

• If parameter was kept as α from t to t+ ` for ` consecutive steps,

‖x(t+ `)− x∗(α)‖ ≤ exp

(
−`
τc

)
‖x(t)− x∗(α)‖

• Bound performance of policy at NE4:

g(x(t+ `))− ωe−
`
τc ≤ g(x∗(α)) ≤ g(x(t+ `)) + ωe−

`
τc

4Under Lipschitz continuity assumptions on g(x)
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Optimism

• Use intuition from multi-armed bandits

• Optimism in face of uncertainty

• Estimate of the best possible global reward for a policy (upper

bound):

UECB = g(x(t+ `)) + ωe−
`
τc

• Try the policy with the best upper bound next

26



Idea: Epochs of Increasing Length

• Need to set policy for a consecutive number of times

• Approach: Epoch-based system: policies are changed only at ends

of epochs

• Lengths of epochs increased as an policy is chosen more times

• Intuition: Promising policies are given more time to converge

• If policy α has been chosen for m epochs, then length of (m+ 1)th

epoch is em+1 time-steps
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Upper Equilibrium Concentration Bound (UECB)

Algorithm (UECB)

For epoch m = 1, 2, . . .

(1) Choose policy αm = arg maxα UECBα for `m = exp(mα + 1)

time-steps

(2) Update UECB:

UECBαm = g(x(t+ `m)) + ωe−`m/τc

End
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Results



Guarantees

Theorem

For any instance of equilibrium bandits, UECB takes a maximum of T̂

time steps to identify the optimal policy α∗ where

T̂ = O

τc ∑
α6=α∗

log

(
1

∆α

) .

• ∆α: Suboptimality gap - difference between performance of optimal

policy and policy α.

• UECB is orderwise optimal
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Numerical Experiments

• Naive strategy - try each action for a fixed number of steps and

decide best based on that

• R(t) - Regret or cumulative loss in reward
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Game Control

• Manager observes noisy rewards5:

• Extension of above algorithm: Similar idea but more involved

• Needs careful averaging and an additional term in bound to account

for noise

• Find optimal parameter from a continuous set of parameters6:

• Algorithm is based on two time-scale stochastic approximation

• Players update their actions on a faster time-scale

• Manager updates their policy on a slower time-scale

5Chandak, Bistriz, Bambos, Equilibrium Bandits: Learning Optimal Equilibria of

Unknown Dynamics, AAMAS 2023
6Chandak, Bistritz, Bambos, Learning to Control Unknown Strongly Monotone

Games, submitted to IEEE TAC
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Thank You!
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