

# Learning Desirable Equilibria for Unknown Multi-Agent Systems

Siddharth Chandak

July 18, 2024

In collaboration with: Ilai Bistritz, Nick Bambos

Department of Electrical Engineering, Stanford University

#### **Outline**

- Overview
- Game Control
- Equilibrium Bandits
- Results

# **Overview**

# **Multi-Agent Systems**



# **Multi-Agent Games**

- ullet Game with N agents
- Each player n takes action  $\mathbf{x}_n$
- Utility (Reward):  $u_n(\mathbf{x}_1, \dots, \mathbf{x}_N)$



# **Local Objective**

- Local Objective: Each player n wants to maximize their reward  $u_n(\mathbf{x}_1,\ldots,\mathbf{x}_N)$
- Constraints:
  - Distributed System
  - Bandit Feedback
  - Limited Communication

# **Constraints: Distributed System**



#### **Constraints: Bandit Feedback**



#### **Constraints: Limited Communication**



# Solution Concept - Nash Equilibrium

• Nash Equilibrium: Action profile  $\mathbf{x}_1^*, \dots, \mathbf{x}_N^*$  is called a Nash equilibrium if:

$$u_n(\mathbf{x}_1^*,\ldots,\mathbf{x}_n^*,\ldots,\mathbf{x}_N^*) \ge u_n(\mathbf{x}_1^*,\ldots,\mathbf{x}_n',\ldots,\mathbf{x}_N^*),$$

for all players n and action  $\mathbf{x}'_n$ .

 No benefit by unilateral deviation - no player can get a better reward if only they change their action

# **Example of Nash Equilibrium**

Firm 2

Firm 1

|                 | Advertise | Don't Advertise |
|-----------------|-----------|-----------------|
| Advertise       | (2,2)     | (6,0)           |
| Don't Advertise | (0,6)     | (4,4)           |

- Each box represents profit (in \$) obtained by Firm 1 and Firm 2, respectively, under each strategy profile
- Cost of advertising = \$2
- Total possible sales = \$8

# **Example of Nash Equilibrium**

Firm 2

Firm 1

|                 | Advertise | Don't Advertise |
|-----------------|-----------|-----------------|
| Advertise       | (2,2)     | (6,0)           |
| Don't Advertise | (0,6)     | (4,4)           |

• Nash Equilibrium is where both firms advertise

### Convergence to NE

- Players converge to NE using gradient ascent on their rewards<sup>12</sup>
  - Completely distributed
  - Each player needs to know only their reward at each time
  - No communication between players
- If each player slowly changes their action to increase their reward, then the system eventually converges to a NE

<sup>&</sup>lt;sup>1</sup>recall that we are working with games with continuous actions

<sup>&</sup>lt;sup>2</sup> for a class of games called monotone games

### NE - good or bad?

- A Nash equilibrium is not always desirable
- Issues:
  - Inequality
  - Inefficiency Braess' Paradox
  - Operation Issues Resource Allocation Games

#### **Braess' Paradox**



- 20 cars want to go from START to END
- At NE, cars are equally distributed in the two symmetric routes (top and bottom)

#### Braess' Paradox



 $\bullet$  Adding an additional zero-delay road between A to B causes longer delays for every player at NE

#### **Resource Allocation Games**

- *K* resources
- ullet Each player's action is K-dimensional, where the  $k^{
  m th}$  dimension represents the amount of  $k^{
  m th}$  resource they use
- Example: electricity grids and wireless channels
- At NE often a few resources are heavily used, creating pressure on system

|          | Hour 1 | Hour 2 | <br>Hour 24 |
|----------|--------|--------|-------------|
| Player 1 | 250 W  | 1000 W | <br>100 W   |
| Player 2 | 150 W  | 800 W  | <br>50 W    |
| ÷        |        | :      |             |
| Player N | 400 W  | 1500 W | <br>0 W     |

# Game Control

#### **Game Parameters**

- ullet Game or multi-agent system is controlled by parameter or policy lpha
- Examples -
  - Toll on each road
  - Price of each resource,
  - Roads or resources available to each player
- Utility for each player  $n: u_n(\mathbf{x}, \alpha)$
- NE corresponding to  $\alpha : \mathbf{x}^*(\alpha) = (\mathbf{x}_1^*(\alpha), \dots, \mathbf{x}_N^*(\alpha))$
- Consider  $\alpha \in \mathcal{A}$  where  $\mathcal{A}$  is a discrete and finite set

# **Global Objective**

- Global reward  $g(\mathbf{x})$
- Problem specific
  - Sum of rewards
  - Minimum reward
  - Function of usage of each resource
- Global Objective: Obtain parameter  $\alpha$  which maximizes global reward at equilibrium, i.e., find  $\alpha^*$  such that  $\alpha^*$  maximizes  $g(\mathbf{x}^*(\alpha))$ .

# **Global Objective**



#### **Problem Formulation**

- ullet At time t, manager sets parameter lpha(t)
- Each player n observes  $u_n(\mathbf{x}(t), \alpha(t))$
- Each player updates their action using gradient ascent on reward  $u_n(\mathbf{x}(t), \alpha(t))$  to obtain  $\mathbf{x}_n(t+1)$
- ullet Manager observes  $g(\mathbf{x}_n(t+1))$  and updates parameter

# **Equilibrium Bandits**

# Challenge

- Cannot switch at every step
  - Manager observes only  $g(\mathbf{x}(t))$
  - ullet Learns very little about reward at equilibrium  $g(\mathbf{x}^*(lpha))$



### **Naive Algorithm**

- ullet Manager tries each policy for a fixed number of consecutive steps  $t_{try}$ , and chooses the best policy based on the final global reward
- Gives some time to converge
- What should  $t_{try}$  be set as?
  - What if too small?
  - What if too large?

# Challenge

- Eventually converges how to know when?
- Want to determine if the NE for a policy will be desirable without waiting for convergence



# Idea: Convergence Bound

• If parameter at time t was  $\alpha$ , then<sup>3</sup>

$$\|\mathbf{x}(t+1) - \mathbf{x}^*(\alpha)\| \le \exp\left(\frac{-1}{\tau_c}\right) \|\mathbf{x}(t) - \mathbf{x}^*(\alpha)\|$$

ullet  $au_c$ : Approximate time to convergence



<sup>&</sup>lt;sup>3</sup>Holds for a class of games known as strongly monotone games

# Idea: Convergence Bound

ullet If parameter was kept as lpha from t to  $t+\ell$  for  $\ell$  consecutive steps,

$$\|\mathbf{x}(t+\ell) - \mathbf{x}^*(\alpha)\| \le \exp\left(\frac{-\ell}{\tau_c}\right) \|\mathbf{x}(t) - \mathbf{x}^*(\alpha)\|$$

• Bound performance of policy at NE<sup>4</sup>:

$$g(\mathbf{x}(t+\ell)) - \omega e^{-\frac{\ell}{\tau_c}} \le g(\mathbf{x}^*(\alpha)) \le g(\mathbf{x}(t+\ell)) + \omega e^{-\frac{\ell}{\tau_c}}$$

 $<sup>^4 \</sup>text{Under Lipschitz}$  continuity assumptions on  $g(\mathbf{x})$ 

#### **Optimism**

- Use intuition from multi-armed bandits
- · Optimism in face of uncertainty
- Estimate of the best possible global reward for a policy (upper bound):

$$UECB = g(\mathbf{x}(t+\ell)) + \omega e^{-\frac{\ell}{\tau_c}}$$

Try the policy with the best upper bound next

# Idea: Epochs of Increasing Length

- Need to set policy for a consecutive number of times
- Approach: Epoch-based system: policies are changed only at ends of epochs
- Lengths of epochs increased as an policy is chosen more times
  - Intuition: Promising policies are given more time to converge
  - If policy  $\alpha$  has been chosen for m epochs, then length of  $(m+1)^{th}$  epoch is  $e^{m+1}$  time-steps

# **Upper Equilibrium Concentration Bound (UECB)**

#### Algorithm (UECB)

For epoch  $m=1,2,\ldots$ 

- (1) Choose policy  $\alpha_m = \arg\max_{\alpha} \mathsf{UECB}_{\alpha}$  for  $\ell_m = \exp(m_{\alpha} + 1)$  time-steps
- (2) Update UECB:

$$\mathsf{UECB}_{\alpha_m} = g(\mathbf{x}(t + \ell_m)) + \omega e^{-\ell_m/\tau_c}$$

#### End

# **Results**

#### Guarantees

#### **Theorem**

For any instance of equilibrium bandits, UECB takes a maximum of  $\widehat{T}$  time steps to identify the optimal policy  $\alpha^*$  where

$$\widehat{T} = \mathcal{O}\left(\tau_c \sum_{\alpha \neq \alpha^*} \log\left(\frac{1}{\Delta_{\alpha}}\right)\right).$$

- $\Delta_{\alpha}$ : Suboptimality gap difference between performance of optimal policy and policy  $\alpha$ .
- UECB is orderwise optimal

# **Numerical Experiments**



- Naive strategy try each action for a fixed number of steps and decide best based on that
- ullet R(t) Regret or cumulative loss in reward

#### Game Control

- Manager observes noisy rewards<sup>5</sup>:
  - Extension of above algorithm: Similar idea but more involved
  - Needs careful averaging and an additional term in bound to account for noise
- Find optimal parameter from a continuous set of parameters<sup>6</sup>:
  - Algorithm is based on two time-scale stochastic approximation
  - Players update their actions on a faster time-scale
  - Manager updates their policy on a slower time-scale

<sup>&</sup>lt;sup>5</sup>Chandak, Bistriz, Bambos, *Equilibrium Bandits: Learning Optimal Equilibria of Unknown Dynamics*, AAMAS 2023

<sup>&</sup>lt;sup>6</sup>Chandak, Bistritz, Bambos, *Learning to Control Unknown Strongly Monotone Games*, submitted to IEEE TAC

# Thank You!