

Tug of Peace: Distributed Learning for Quality of Service Guarantees

Siddharth Chandak, Ilai Bistritz, Nicholas Bambos

December 13, 2023

IEEE CDC 2023

- Motivation & Problem Formulation
- Tug-of-Peace Algorithm
- Results
- Proof Sketch

[Motivation & Problem](#page-2-0) [Formulation](#page-2-0)

- Consider a game with N players
- Each player *n* takes continuous action $x_n \in \mathcal{X}_n$
- $\mathbf{x} \coloneqq (x_1, \ldots, x_N)^T$
- Receives Utility (Reward): $u_n(\mathbf{x})$
- Intuition Want each agent to be "sufficiently happy"
- Each agent n has their own QoS requirement λ_n
- Objective for each agent n :

$$
u_n(x_1,\ldots,x_N)\geq \lambda_n
$$

Example: Power Control in Wireless Networks

- Players Transmitters
- Action Transmission Power
- Utility Signal-to-Interference Ratio (SIR)
- Vast literature on obtaining QoS for such games
	- Foschini et al. (1993), Yates (1995), Biguesh et al. (2011), etc.
	- Employ very specific techniques
- Each player takes action in $\mathbb R$
- Intuition: Increase in player 1's action reduces rewards for all other players

Definition 1 (Tug-of-War Game)

A game is a ToW game if the utility function is continuously differentiable and satisfies

$$
\frac{\partial u_n(\mathbf{x})}{\partial x_m} < 0, \ \forall m \neq n.
$$

Also $u_n(\mathbf{x}) = 0$ if $x_n = 0$ and $u_n(\mathbf{x}) \geq 0$, $\forall x$.

Application 1: Power Control in Wireless Networks

- Players Transmitters
- Action Transmission Power
- Utility Signal-to-Interference Ratio (SIR)
- Action set \mathcal{X}_n for each player: $\mathcal{X}_n \coloneqq [0, B_n] \subseteq \mathbb{R}$
- Each player chooses action $x_n(t)$ at each time $t \in \{0, 1, 2, \ldots\}$
- Observes noisy reward $y_n(t) = u_n(\mathbf{x}(t)) + M_t$ where M_t is martingale difference noise
- Wish $\mathbf{x}(t) \xrightarrow{a.s.} \hat{\mathbf{x}}$ where $u_n(\hat{\mathbf{x}}) \geq \lambda_n$ for all n

Application 2: Activation in Sensor Networks

• Player: Sensors in a network

- Collect data and also relay observations from other sensors
- On (awake) or Off (asleep) at each time with some probability
- When sensor is off : neither collects, nor relays
- Action x_n : sleeping probability for player n
- Utility for player n: $\alpha \pi_n(\mathbf{x}) \beta B(x_n)$
	- $\pi_n(x)$: probability that player n's packets reach their destination
		- Need all sensors in route to destination to be active for packet to reach destination
	- $B(x_n)$: battery usage of player n

Application 2: Activation in Sensor Networks

- Action for player $n: x_n$ is sleeping probability for player n
- Utility for player n: $\alpha \pi_n(\mathbf{x}) \beta B(x_n)$
	- $\pi_n(x)$: probability that player n's packets reach their destination

•
$$
x_m \uparrow \implies \pi_n(\mathbf{x}) \downarrow \forall n
$$

- $x_m \uparrow \Longrightarrow u_n(\mathbf{x}) \downarrow \forall m \neq n$
- $x_m \uparrow \Longrightarrow B(x_m) \downarrow$

Why can Power Control algorithms not work for general ToW games?

- Multiple Equilibria
- Boundary Issues
- Unknown System
- Handling Noise

Problem 1

Design a distributed algorithm which requires "little" communication between agents such that $\mathbf{x}(t) \xrightarrow{a.s.} \hat{\mathbf{x}}$, such that $u_n(\hat{\mathbf{x}}) \geq \lambda_n,$ for all n

Subproblem 1

 $\mathbf{x}(t) \longrightarrow \mathbf{x}_{*}$, where \mathbf{x}_{*} is the minimal point s.t. $u_{n}(\mathbf{x}_{*}) \geq \lambda_{n}$, for all n

[Tug-of-Peace](#page-13-0)

Iteration:

$$
x_n(t+1) = x_n(t) + \eta(t)(\lambda_n - u_n(\mathbf{x(t)})).
$$

Intuition:

- Increase action if receive reward lower than QoS requirement
- Decreases rewards for other players
- Other players also increase their action
- 'Cooperative' increase in actions leads to convergence

Stepsize $\eta(t)$:

$$
\sum_{t} \eta(t) = \infty, \ \sum_{t} \eta(t)^2 < \infty \ \text{and} \ \eta(t+1) < \eta(t)
$$

- $x_n(t)$ need to be inside $\mathcal{X}_n = [0, B_n]$ for all n and t
- Noise can cause iterates to go beyond boundaries need to project iterates back into \mathcal{X}_n
- Denote the projection operator into \mathcal{X}_n by $\Pi_{\mathcal{X}_n}$
- But this can lead to equilibrium points at boundary which do not satisfy QoS condition

Intuition - Reset at Boundary

When at boundary:

- Send *alarm* signal to every player.
- All players reset to action 0 on receipt of *alarm* signal

Intuition:

- 1-bit signal to avoid the possibility of being stuck at boundary
- Resets iteration with a lower starting stepsize

Tug-of-Peace Algorithm (ToP)

Algorithm 1

Initialization: Let $x_n(0) = 0, \forall n$.

At timesteps $t = 0, 1, \ldots$, each player n

(1) Plays action $x_n(t)$ and observes a noisy reward $y_n(t)$.

(2) Updates their action as follows:

$$
x_n(t+1) = x_n(t) + \eta(t) \Pi_{\mathcal{X}_n}(\lambda_n - y_n(t)).
$$

- (3) Transmits signal $s_n = 1$ if $x_n(t+1) = B_n$, otherwise it does nothing (i.e., $s_n = 0$).
- (4) Resets action to 0, i.e., $x_n(t + 1) = 0$ upon receiving $s_m = 1$ from some player m .

End

[Results & Proof Sketch](#page-18-0)

Theorem 1

- 1. If the QoS requirements are feasible, then the iterates of the ToP algorithm a.s. converge to an equilibrium point \hat{x} such that $u_n(\hat{\mathbf{x}}) > \lambda_n, \ \forall n.$
- 2. The reset to $x = 0$ happens only finitely often.
- 3. With high probability (depending on stepsize), the iterates converge to x_* , where x_* is the minimal point which satifies the QoS requirements for all agents.

Numerical Results

(a) Power Control with $N = 50$ players (b) Sensor Activation

• Stochastic Approximation¹: Iterates $\mathbf{x}(t)$ of ToP algorithm asymptotically track the solutions of the ODE

 $\dot{\mathbf{x}}(t) = \lambda - \mathbf{u}(\mathbf{x}(t))$

• Cooperative ODE²: An ODE of form $\dot{\mathbf{x}}(t) = \mathbf{h}(\mathbf{x}(t))$, where

$$
\frac{\partial h_n(\mathbf{x})}{\partial x_m} > 0
$$

converges to a set of equilibria.

 1 Borkar (2022)

 2 Hirsch et al. (2003)

- Domain of Attraction³: $x = 0$ lies in the domain of attraction of the minimal equilibrium point x_* for the ODE: $\dot{\mathbf{x}}(t) = \lambda - \mathbf{u}(\mathbf{x}(t))$
	- For any point \hat{x} which satisfies $u_n(\hat{x}) \geq \lambda_n$ for all $n, x_{n \leq \hat{x}_n}$ for all n .
- Concentration:⁴ If initiated in the domain of attraction of x_* , the iterates $x(t)$ stay in a ϵ -ball around x_* for all $t > T$ with high probability.

³Hirsch (1985)

⁴Thoppe et al. (2019)

[Summary](#page-23-0)

- Quality of Service guarantees for Tug-of-War games
- Tug-of-Peace Algorithm
- Applications include Power Control and Sensor Activation
- Extensions for this work:
	- Asynchronous system
	- Finite-time guarantees
	- Multi-dimensional action spaces

Thank You!

Algorithm 2

Initialization: Let $x_n(0) = 0, \forall n$.

At timesteps $t = 0, 1, \ldots$, each player n

(1) Plays action $x_n(t)$ and observes a noisy reward $y_n(t)$.

(2) Updates their action as follows:

$$
x_n(t+1) = x_n(t) + \eta(t) \Pi_{\mathcal{X}_n}(\lambda_n - y_n(t)).
$$

End

Theorem 2

With high probability (depending on stepsize), the iterates converge to x_* , where x_* is the minimal point which satifies the QoS requirements for all agents.