

Learning Desirable Equilibria for Unknown Multi-Agent Systems

Siddharth Chandak

Advisor: Nicholas Bambos

May 4, 2023

PhD Qualification Exam

Department of Electrical Engineering, Stanford University

Outline

- Overview
- Quality of Service
- Tug-of-Peace
- Summary

Overview

Multi-Agent Systems

Multi-Agent Games

- ullet Game with N agents
- Each player n takes action x_n
- Utility (Reward): $u_n(x_1, \ldots, x_N)$

Challenges: Distributed System

Challenges: Bandit Feedback

Challenges: Limited Communication

Research in Multi-Agent Systems

- Equilibrium Bandits: Learning Optimal Equilibria of Unknown Dynamics¹
- Tug of Peace: Distributed Learning for Quality of Service Guarantees²

¹Chandak, Bistritz, Bambos: in *International Conference on Autonomous Agents and Multiagent Systems (AAMAS) 2023*

²CBB: submitted to IEEE Conference on Decision and Control (CDC) 2023

Quality of Service

What is QoS?

- Intuition Want each agent to be "sufficiently happy"
- \bullet Each agent n has their own QoS requirement λ_n
- ullet Local Objective: $u_n(x_1,\ldots,x_N) \geq \lambda_n$

Example: Power Control in Wireless Networks

- Players Transmitters
- Action Transmission Power
- Utility Signal-to-Interference Ratio (SIR) or Throughput
- Vast literature on obtaining QoS for such games
 - Foschini et al. (1993), Yates (1995), Biguesh et al. (2011), etc.
 - Employ very specific techniques

Tug-of-War Games

Intuition: Increase in player 1's action reduces rewards for all other players

Definition 1 (Tug-of-War Game)

A game is a ToW game if the utility function is continuously differentiable and satisfies

$$\frac{\partial u_n(\mathbf{x})}{\partial x_m} < 0, \ \forall m \neq n.$$

Also $u_n(\mathbf{x}) = 0$ if $x_n = 0$ and $u_n(\mathbf{x}) \ge 0$, $\forall x$.

Application 1: Power Control in Wireless Networks

- Players Transmitters
- Action Transmission Power
- Utility Signal-to-Interference Ratio (SIR)

Problem Formulation

- Action set \mathcal{X}_n for each player: $\mathcal{X}_n \coloneqq [0, B_n] \subseteq \mathbb{R}$
- ullet Each player chooses action $x_n(t)$ at each time $t \in \{0,1,2,\ldots\}$
- Observes noisy reward $y_n(t) = u_n(\mathbf{x}(t)) + M_t$
- Wish $\mathbf{x}(\mathbf{t}) \xrightarrow{a.s.} \hat{\mathbf{x}}$ where $u_n(\hat{\mathbf{x}}) \geq \lambda_n$ for all n

Application 2: Activation in Sensor Networks

- Player: Sensors in a network
 - Collect data and also relay observations from other sensors
 - On (awake) or Off (asleep) at each time with some probability
 - When sensor is off: neither collects, nor relays
- Action x_n : sleeping probability for player n
- Utility for player $n: \alpha \pi_n(\mathbf{x}) \beta B(x_n)$
 - $\pi_n(x)$: probability that player n's packets reach their destination
 - Need all sensors in route to destination to be active for packet to reach destination
 - $B(x_n)$: battery usage of player n

Application 2: Activation in Sensor Networks

- Action for player n: x_n is sleeping probability for player n
- Utility for player $n: \alpha \pi_n(\mathbf{x}) \beta B(x_n)$
 - $\pi_n(x)$: probability that player n's packets reach their destination
 - $x_m \uparrow \Longrightarrow \pi_n(\mathbf{x}) \downarrow \forall n$
 - $x_m \uparrow \Longrightarrow u_n(\mathbf{x}) \downarrow \forall m \neq n$
 - $x_m \uparrow \Longrightarrow B(x_m) \downarrow$

General Setting

Why can Power Control algorithms not work for general ToW games?

- Multiple Equilibria
- Boundary Issues
- Unknown System
- Handling Noise

Goals

Problem 1

Design a distributed algorithm which requires "little" communication between agents such that $\mathbf{x}(t) \xrightarrow{a.s.} \mathbf{\hat{x}}$, such that $u_n(\mathbf{\hat{x}}) \geq \lambda_n$, for all n

Subproblem 1

 $\mathbf{x}(t) \longrightarrow \mathbf{x}_*$, where \mathbf{x}_* is the minimal point s.t. $u_n(\mathbf{x}_*) \ge \lambda_n$, for all n

Tug-of-Peace

Intuition - Iteration

Iteration:

$$x_n(t+1) = x_n(t) + \eta(t)(\lambda_n - u_n(\mathbf{x}(\mathbf{t}))).$$

- Increase action if receive reward lower than QoS requirement
- Decreases rewards for other players
- Other players also increase their action
- 'Cooperative' increase in actions leads to convergence

Intuition - Boundary Effects

When at boundary:

- Send alarm signal to every player.
- All players reset to action 0 on receipt of alarm signal

Intuition:

- 1-bit signal to avoid the possibility of being stuck at boundary
- Resets iteration

Tug-of-Peace Algorithm

Algorithm 1

Initialization: Let $x_n(0) = 0$, $\forall n$.

At timesteps $t = 0, 1, \ldots$, each player n

- (1) Plays action $x_n(t)$ and observes a noisy reward $y_n(t)$.
- (2) Updates their action as follows:

$$x_n(t+1) = x_n(t) + \eta(t)(\lambda_n - y_n(t)).$$

- (3) Transmits signal $s_n = 1$ if $x_n(t+1) = B_n$, otherwise it does nothing (i.e., $s_n = 0$).
- (4) Resets action to 0, i.e., $x_n(t+1)=0$ upon receiving $s_m=1$ from some player m.

End

Results

Theorem 1

- 1. If the QoS requirements are feasible, then the iterates of the ToP algorithm a.s. converge to an equilibrium point $\hat{\mathbf{x}}$ such that $u_n(\hat{\mathbf{x}}) \geq \lambda_n, \ \forall n.$
- 2. The reset to x = 0 happens only finitely often.
- 3. With high probability (depending on stepsize), the iterates converge to \mathbf{x}_* , where \mathbf{x}_* is the minimal point which satisfies the QoS requirements for all agents.

Numerical Results

(a) Power Control with N=50 players

(b) Sensor Activation

Proof Sketch

 \bullet Stochastic Approximation 3 : Iterates $\mathbf{x}(t)$ of ToP algorithm asymptotically track the solutions of the ODE

$$\dot{\mathbf{x}}(t) = \lambda - \mathbf{u}(\mathbf{x}(t))$$

ullet Cooperative ODE 4 : An ODE of form $\dot{\mathbf{x}}(t) = \mathbf{h}(\mathbf{x}(t))$, where

$$\frac{\partial h_n(\mathbf{x})}{\partial x_m} > 0$$

converges to a set of equilibria.

³Borkar (2022)

⁴Hirsch et al. (2003)

Proof Sketch

- **Domain of Attraction**⁵: $\mathbf{x} = \mathbf{0}$ lies in the domain of attraction of the minimal equilibrium point \mathbf{x}_* for the ODE: $\dot{\mathbf{x}}(t) = \lambda \mathbf{u}(\mathbf{x}(t))$
 - For any point $\hat{\mathbf{x}}$ which satisfies $u_n(\hat{\mathbf{x}}) \geq \lambda_n$ for all n, $x_{*_n} \leq \hat{x}_n$ for all n.
- Concentration:⁶ If initiated in the domain of attraction of \mathbf{x}_* , the iterates $\mathbf{x}(t)$ stay in a ϵ -ball around \mathbf{x}_* for all t>T with high probability.

⁵Hirsch (1985)

⁶Thoppe et al. (2019)

Summary

Summary

- Learning desirable equilibria of unknown multi-agent systems
- Providing Quality of Service guarantees
 - Tug-of-War games
 - Tug-of-Peace algorithm
- Extensions for this work:
 - Asynchronous system
 - Finite-time guarantees

Publications

Multi-Agent Systems

- S. Chandak, I. Bistritz, N. Bambos, "Tug of Peace: Distributed Learning for Quality of Service Guarantees", submitted to *IEEE Conference on Decision and Control (CDC)* 2023
- S. Chandak, I. Bistritz, N. Bambos, "Equilibrium Bandits: Learning Optimal Equilibria of Unknown Dynamics", in *International Conference on Autonomous Agents and Multiagent Systems (AAMAS)* 2023

Theoretical Reinforcement Learning

- 1. S. Chandak, V. S. Borkar and P. Dodhia, "Reinforcement Learning in Non-Markovian Environments", submitted to *Systems and Control Letters*.
- 2. S. Chandak, V. S. Borkar and H. Dolhare, "A Concentration Bound for LSPE(λ)", in *Systems and Control Letters*, January 2023
- S. Chandak, V. S. Borkar and P. Dodhia, "Concentration of Contractive Stochastic Approximation and Reinforcement Learning", in *Stochastic* Systems, July 2022

Thank You!