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Overview



Multi-Agent Systems




Multi-Agent Games

e Game with IV agents or players

e Each player n takes action x,,

e Utility (Reward): w,(x1,...,2N)




Local Objective

e Local Objective: Each player n wants to maximize their reward
Up(X1,...,%xx) under the constraint of limited feedback



Bandit Feedback

x(t) = (1(t), 22(t), z3(¢))



Game Manager

e Game Manager or System Controller
e Control some parameter € of the game
e For example, can control the action set of players, or the utilities of
players
e We focus on the latter

e Have their own objective - the “Global Objective”

e Each player is optimizing for the local objective of u,(x;0)
e The manager is optimizing for the global objective of ®(x;6)
e Bandit feedback



Game Control

o(t)

Manager

D(x(t); 6(t))



Evolution of Players’ Actions

e How do players update their actions?
e Converge to Nash equilibrium?

e We focus on a class of games called Strongly Monotone Games



Strongly Monotone Games and Nash
Equilibrium



Strongly Monotone Games

e Class of continuous action games
e Unique pure Nash Equilibrium (NE)

e Each player performing gradient ascent on their utilities leads to
convergence to NE

e Stronger than just convergence

e [ntuitively: multi-agent extension of strongly concave functions
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Definition

e Suppose player n chooses actions in X,, C R? where X, is convex

and compact

e Define the concatenated gradient operator G(-) : RV9 — RN a5
G(X) - (vzlul(wlv X—l)a ey VENUN(xNa X—N))7

where x = (21,...,2ZN)

Definition 1 (Strongly Monotone Games)
There exists ;1 > 0 such that for all x,y € X,

(y —x,G(y) — G(x)) < —ply — x|?
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Nash Equilibrium

e Suppose each player updates their actions as follows (for stepsize 7;):

Tn,t+1 = Tn,t + ntvznun(xn,t; X—n,t)

e Converges to unique pure NE x*

Definition 2

An action profile x* is a pure Nash equilibrium (NE) if
Un (2, X*_) > up (@, x*_y), forall z, € X, and all n € \V.
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Is this NE what we want?

e A NE is not always desirable
e Issues:

e Inequality
e Inefficiency - Braess' Paradox
e Operational Issues - Resource Allocation Games
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Resource Allocation Games

e K resources

Each player's action is K —dimensional, where the k™ dimension

represents the amount of k™ resource they use

Example: electricity grids and wireless channels

At NE - often a few resources are heavily used, creating pressure on

system
Hour 1 | Hour 2 | --- | Hour 24
Player 1 | 250 W | 1000 W | --- 100 W

Player 2 | 150 W | 800 W | --- 50 W

Player N | 400 W | 1500 W | --- ow




A Controlled Strongly Monotone Game

e Recall that utilities are given by wu,(x;0)

e Players update their actions using gradient ascent
Tn,t+1 = Tn,t + ntvwnun(xt; ot)

e For fixed 6, players converge to some x*(0)
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Learning to Control Unknown Multi-Agent Systems

e Problem Statement: How to choose the control 6; such that the
players converge to a desirable NE under noisy bandit feedback?
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Scenario |I: Controllable Linear
Coefficients




Linear

Coefficients

Each player takes action xz,, = (:17%1), .. x; )) in a compact and
convex set X,, C R?

Utility for each player is given by:

d
uﬂ(xaﬂv(Ll)a"'vﬂgz *TTL Zﬂl) sLZ
=1

rn(x) - reward from ‘original’ uncontrolled game without any control

S B2 - linear shift in utility
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Control Parameter and Manager’s Objective

Zle B2 - linear shift in utility

e The controllable game parameter 6 is the Nd-dimensional vector 3

Steer the players’ NE towards a point that satisfies K linear
constraints:
Ax = ¢*

e Manager only observes the constraint violation Ax; — £*
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Application: Resource Allocation

e Recall that 335,2) denotes how much player n uses resource ¢

Suppose the constraints are of the form

N
Z :cgf) =0
n=1

for each resource i € {1,..., K}

Then the manager can set j3; for each resource i (constant across all
players)
e Additional price or subsidy on using a resource

Can be extended to weighted resource allocation by separate price
for each player as well
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Assumptions and Problem Formulation

The uncontrolled game with utilities r,,(x) is strongly monotone

o Let F(x) = (Vo ri(z1,x-1),...,VaxyTn(zZN,X_N))
(y =%, F(y) = F(x)) < —plly — x||”

e Gradient operator for controlled game is G(x) = F(x) — 3
e Implies that the controlled game is also strongly monotone:

Mapping F'(-) is Lipschitz continuous

At each timestep, player n observes noisy version of gradient of
reward: V, r,(x¢) + My 141

e M, ¢++1 is martingale difference noise with bounded second moment

Slater’s condition holds
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Online Game Control Algorithm

Algorithm (Online Game Control)

Initialization: Let y € X and o € RE.

For each turn t > 0 do

1. The manager broadcasts a; to the players

2. The manager observes the vector Ax; — £* and updates the
controlled input using

O] = O aF Et(AXt — E*)

3. Each player n computes 3, ; = AL a; and updates its action using
gradient ascent:

o1 = L, (Znt + M (Va,mn(Xe) + M1 — Bnt))
where Ilx is the Euclidean projection into X,.

End
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Understanding the Algorithm

e Vectorized Form:
Xi4+1 = HX (Xt —+ Nt (F(Xf) = ATOét —+ Mt+1) )
a1 = O + Gt(AXt — E*)

e Instead of directly transmitting 3; € RV¢, manager updates and
transmits a; € R¥, such that 8, = AT o,

e |terative approach to solving the constrained optimization problem
using Lagrange multipliers
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Two-time-scale Stochastic Approximation (SA)

e Qur algorithm is a two-time-scale stochastic approximation algorithm

Faster: Xt4+1 = HX (Xt + Mt (F(Xf) — ATO[t + Mt+1) )
Slower: a1 = o + €,(Axy — £7)

e Timescales dictated by stepsizes 7; and ¢;

e 7 is larger, or decays at a slower rate, e.g., 1/n°°

. 5
e ¢, is smaller, or decays at a faster rate, e.g., l/no'h

e Intuition:

e Faster time-scale: o, considered quasi-static
e Slower time-scale: x; tracks x™(a), the NE corresponding to a
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Time-scale Separation

e Condition on stepsizes:
1 1
e = ( — and €t =

t+T1)" (t+T)’

where 0.5 < 1 < e < 1. Importantly,
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Results

Theorem
Define Nopr = {a | Ax*(ar) = £*}. Then

e «y converges to the set N, x; converges to x*(ay), and
lim Ax; = £,
t—o00
with probability 1.

o Eflax— £ =0 (n + ).

ter

The best rate based on above result is O (¢70-251%) where ¢ is arbitrarily
small. This is achieved at n = 0.5+ /3 and € = 0.75 4 0.
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Simulations

Weighted Load
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Analysis

Xit1 = 11y (Xt + (F(Xt) — ATOZt + Mt+1) )

a1 = O + Et(AXt — E*)

e Can be expressed as fixed-point iterations:

X1 = (Xt + e (f (%, ) — x4 + Mt-{—l))

a1 = oy +e(glo) — oy + wy)

e Here
o f(x,0) =x+ F(x) — AT
e g(a) = a+ (Ax*(a) — £9)
e w; = Axy — Ax* () is the equilibrium noise
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Analysis

x¢+1 = (Xt +ne(f (x5 ) — x4 + Mt+1)>

a1 = oy +e(g(og) — oy +wy)

e f(x,a) is contractive in x:

||f(x17a) - f(XQaa)H < /\”Xl - X2||7

forsome 0 < A <1

e Unique fixed point for faster time-scale for given « - the NE x* ()

e g(a) is non-expansive:

l9(c1) = g(a)|| < flan — s
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Analysis

e Two-time-scale SA widely studied when both time-scales have
contractive mapping
e We have contractive in faster and non-expansive in slower time-scale

e Requires novel analysis
e |eads to a slower decay rate
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An interesting observation

e Why do we have to deal with a non-expansive mapping in the slower
time-scale?
e Projection in the faster time-scale
e Each player has a convex and compact action set
e In the absence of this projection, both time-scales have contractive
mapping’
o A rate of O(1/t) can be achieved?

1Chandak, Siddharth, " Non-Expansive Mappings in Two-Time-Scale Stochastic
Approximation: Finite-Time Analysis.” arXiv:2501.10806 (2025).

2Chandak, Siddharth. "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale
Stochastic Approximation.” arXiv:2504.19375 (2025).

31



Scenario |l: Discrete Game
Parameters




Problem Formulation

e Manager has to choose from a discrete set of parameters
0e{l,...,K}
e Can be thought of as K different policies
e Maximize global objective ®(x;6)

e Example: Resource Allocation

Manager decides which subset of resources each player can use
Each 0 € {1,..., K} denote this subset for each player

e Under action 6, player n has only access to resources

Rn.(0) C{1,...,d}

Examples of practical implementation: Odd-Even rule
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Problem Formulation

e Manager chooses 0; att =0,...,

e Players update their action using gradient ascent:

Tn,t+1 = Tn,t atx n (anun (Xt; et))

e Manager observes noisy global reward y; = ®(xy; 60;) + M;
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Formulating the Manager’s Objective

e Manager cares about the objective at Nash equilibrium

e Optimal policy defined with respect to global objective at
corresponding NE:

0* = arg max ®(x*(0); 0)
0

e Regret:

E[R(T)] =E | > (®(x"(67);6%) — D(xt;6,))

e Defined w.r.t. what the optimal policy achieves at equilibrium
e Incentivize the manager to choose the optimal policy and allow the

players to converge quickly
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How is this different?

e Cannot switch policy at every step
e Unlike the previous scenario where 3 could be changed continuously,
we have discrete choices here
e \Would learn nothing about the objective at NE

Xt+1 xt+3
\ 0/1
xt+2
Xi44@ [’}
2
\.
Xt+5
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Distance from NE

e Converges to NE if policy is fixed

e But how long to wait for convergence?

36



Distance from NE

e Distance from NE x*(#) decreases when policy 6 is implemented,

i.e.,

* 1 *
e = x @) < exp (~1 ) o= x @),

c

where policy at time t is 6
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Distance from NE

* 1 *
s = x @) < exp (2 ) I = "0l

(63

e T.: ‘approximate’ convergence time to equilibrium

o exp(—1/7.) = /1 —2un + Lgn?
e ,i: strongly monotone parameter of game

e L¢: Lipschitz constant for concatenated gradient operator G(+)
e 1. Stepsize used by players for gradient ascent
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Equilibrium Bandits

e Model this problem as a modification of the stochastic multi-armed
bandit problem
e Each policy is an arm
e The exact true reward (+ stochastic noise) of an arm is known only
after playing it infinitely often
e Solve this problem using optimism-based algorithm
e Modification of Upper Confidence Bound

e Upper Equilibrium Confidence Bound
e Three major additions
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The Key Idea: Bounds on Objective at NE

e Want to determine how the players will behave at equilibrium for a
policy without waiting for convergence

e Recall: Distance from NE x*(6) decreases when policy 6 is
implemented, i.e.,

* 1 *
Iies = X' @)l < exp (-2 ) I = x° @),

where policy at time ¢ is 0

e Approach: Can use this to get a bound on the global objective at
NE for a policy

e Suppose policy 6 is chosen consecutively ¢ times (from ¢ to ¢ + £):
B(xese30) — Le™ 7 < B(x"(0);0) < B(xere;0) + Le™ 75,

where L is Lipschitz constant for ®(-;6).
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Moadification Il - Epochs of Increasing Length

e Need to keep policy fixed for a consecutive number of times

e Approach: Epoch-based system: policies are changed only at ends
of epochs
e Lengths of epochs increased as a policy is chosen more times
e Intuition: Promising policies are given more time to converge
o If policy @ has been chosen for m epochs, then length of (m 4 1)*"
epoch is e™*! time-steps
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Modification Ill: Noise Averaging

e Manager observes noisy global objective: need to average to
eliminate noise
e Cannot average all rewards from an epoch (or from older epochs):
e Far from equilibrium, hence less information about reward at
equilibrium
e Approach: If policy € is implemented for ¢ consecutive steps in an
epoch, take average of last £/2 observed rewards
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UECB: Bring it Together

Algorithm (UECB)
For epoch n=1,2,...

(1) Implement policy 6,, = arg max, UECBy for £,, = exp(mg, + 1)
time-steps

(2) Estimate:

tntln

Yt
t=tn+Ln/2

(3) Update UECB:

A € _ gn 3
UECBy,,, = o, + 7671/2 exp ( > + g / 10g(2t )

End



UECB: Bring it Together

Algorithm (UECB)
For epoch n =1,2,...

(1) Implement policy 6,, = arg max, UECBy for £,, = exp(mg, + 1)

time-steps
(2) Estimate:
1 tn+ln
é =]
6,n én/2 Z Yt
t=tn+Ln /2

(3) Update UECB:

~ fn CQO’2 .
UECB n = (0] n _— 1 23
9, 9, n/2 eXP( 2Tc> < e og(2t3)

—_
Noise Averaging (~ UCB)

Equilibrium Bias

End
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Results

Theorem
The regret achieved by UECB algorithm is bounded as:

ERD) =0 Log(7)

040"

+ 7. log (TC log <A1>> + 7. log (log(T))
)

where Ay is the suboptimality gap for policy 6 defined w.r.t. equilibrium
rewards.
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Simulations
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Conclusions

e Game control under two different scenarios

Scenario I: Controllable linear coefficients

e [ntuition: pricing and subsidies
e Proposed a two-time-scale method for convergence to desirable NE

Scenario II: Discrete game control parameters

e Intuition: different policies
e Developed UECB, an optimism-based bandit algorithm

Can study many other scenarios with varying assumptions and
applications

47



Thank You!



Thank You!

The talk was primarily based on

e Chandak, Siddharth, llai Bistritz, and Nicholas Bambos, " Learning to Control
Unknown Strongly Monotone Games.” arXiv:2407.00575 (2024).

e Chandak, Siddharth, llai Bistritz, and Nicholas Bambos. "Equilibrium Bandits:
Learning Optimal Equilibria of Unknown Dynamics.” International Conference on

Autonomous Agents and Multiagent Systems. (2023)

Results on two-time-scale SA (more discussion on the projection in the faster
time-scale):

e Chandak, Siddharth, " Non-Expansive Mappings in Two-Time-Scale Stochastic
Approximation: Finite-Time Analysis.” arXiv:2501.10806 (2025).

e Chandak, Siddharth, "O(1/k) Finite-Time Bound for Non-Linear
Two-Time-Scale Stochastic Approximation.” arXiv:2504.19375 (2025).
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