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Overview



Multi-Agent Systems
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Multi-Agent Games

• Game with N agents or players

• Each player n takes action xn

• Utility (Reward): un(x1, . . . , xN )
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Local Objective

• Local Objective: Each player n wants to maximize their reward

un(x1, . . . ,xN ) under the constraint of limited feedback
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Bandit Feedback
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Game Manager

• Game Manager or System Controller

• Control some parameter θ of the game

• For example, can control the action set of players, or the utilities of

players

• We focus on the latter

• Have their own objective - the “Global Objective”

• Each player is optimizing for the local objective of un(x; θ)

• The manager is optimizing for the global objective of Φ(x; θ)

• Bandit feedback
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Game Control
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Evolution of Players’ Actions

• How do players update their actions?

• Converge to Nash equilibrium?

• We focus on a class of games called Strongly Monotone Games
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Strongly Monotone Games and Nash

Equilibrium



Strongly Monotone Games

• Class of continuous action games

• Unique pure Nash Equilibrium (NE)

• Each player performing gradient ascent on their utilities leads to

convergence to NE

• Stronger than just convergence

• Intuitively: multi-agent extension of strongly concave functions

11



Definition

• Suppose player n chooses actions in Xn ⊆ Rd where Xn is convex

and compact

• Define the concatenated gradient operator G(·) : RNd 7→ RNd as

G(x) = (∇x1
u1(x1,x−1), . . . ,∇xNuN (xN ,x−N )),

where x = (x1, . . . , xN )

Definition 1 (Strongly Monotone Games)

There exists µ > 0 such that for all x,y ∈ X ,

〈y − x, G(y)−G(x)〉 ≤ −µ‖y − x‖2

12



Nash Equilibrium

• Suppose each player updates their actions as follows (for stepsize ηt):

xn,t+1 = xn,t + ηt∇xnun(xn,t,x−n,t)

• Converges to unique pure NE x∗

Definition 2

An action profile x∗ is a pure Nash equilibrium (NE) if

un(x∗n,x
∗
−n) ≥ un(xn,x

∗
−n), for all xn ∈ Xn and all n ∈ N .
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Is this NE what we want?

• A NE is not always desirable

• Issues:

• Inequality

• Inefficiency - Braess’ Paradox

• Operational Issues - Resource Allocation Games
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Resource Allocation Games

• K resources

• Each player’s action is K−dimensional, where the kth dimension

represents the amount of kth resource they use

• Example: electricity grids and wireless channels

• At NE - often a few resources are heavily used, creating pressure on

system

Hour 1 Hour 2 · · · Hour 24

Player 1 250 W 1000 W · · · 100 W

Player 2 150 W 800 W · · · 50 W
...

...
...

...

Player N 400 W 1500 W · · · 0 W
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A Controlled Strongly Monotone Game

• Recall that utilities are given by un(x; θ)

• Players update their actions using gradient ascent

xn,t+1 = xn,t + ηt∇xnun(xt; θt)

• For fixed θ, players converge to some x∗(θ)
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Learning to Control Unknown Multi-Agent Systems

• Problem Statement: How to choose the control θt such that the

players converge to a desirable NE under noisy bandit feedback?
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Scenario I: Controllable Linear

Coefficients



Linear Coefficients

• Each player takes action xn = (x
(1)
n , . . . , x

(d)
n ) in a compact and

convex set Xn ⊆ Rd

• Utility for each player is given by:

un(x, β(1)
n , . . . , β(d)

n ) = rn(x)−
d∑
i=1

β(i)
n x(i)n

• rn(x) - reward from ‘original’ uncontrolled game without any control

•
∑d
i=1 β

(i)
n x

(i)
n - linear shift in utility
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Control Parameter and Manager’s Objective

•
∑d
i=1 β

(i)
n x

(i)
n - linear shift in utility

• The controllable game parameter θ is the Nd-dimensional vector β

• Steer the players’ NE towards a point that satisfies K linear

constraints:

Ax = `∗

• Manager only observes the constraint violation Axt − `∗
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Application: Resource Allocation

• Recall that x
(i)
n denotes how much player n uses resource i

• Suppose the constraints are of the form

N∑
n=1

x(i)n = `∗i

for each resource i ∈ {1, . . . ,K}
• Then the manager can set βi for each resource i (constant across all

players)

• Additional price or subsidy on using a resource

• Can be extended to weighted resource allocation by separate price

for each player as well
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Assumptions and Problem Formulation

• The uncontrolled game with utilities rn(x) is strongly monotone

• Let F (x) := (∇x1r1(x1,x−1), . . . ,∇xN rN (xN ,x−N ))

〈y − x, F (y)− F (x)〉 ≤ −µ‖y − x‖2

• Gradient operator for controlled game is G(x) = F (x)− β
• Implies that the controlled game is also strongly monotone:

• Mapping F (·) is Lipschitz continuous

• At each timestep, player n observes noisy version of gradient of

reward: ∇xnrn(xt) +Mn,t+1

• Mn,t+1 is martingale difference noise with bounded second moment

• Slater’s condition holds
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Online Game Control Algorithm

Algorithm (Online Game Control)

Initialization: Let x0 ∈ X and α0 ∈ RK .

For each turn t ≥ 0 do

1. The manager broadcasts αt to the players

2. The manager observes the vector Axt − `∗ and updates the

controlled input using

αt+1 = αt + εt(Axt − `∗).

3. Each player n computes βn,t = ATnαt and updates its action using

gradient ascent:

xn,t+1 = ΠXn (xn,t + ηt (∇xnrn(xt) +Mn,t+1 − βn,t))

where ΠXn is the Euclidean projection into Xn.

End
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Understanding the Algorithm

• Vectorized Form:

xt+1 = ΠX

(
xt + ηt

(
F (xt)−ATαt +Mt+1

) )
αt+1 = αt + εt(Axt − `∗)

• Instead of directly transmitting βt ∈ RNd, manager updates and

transmits αt ∈ RK , such that βt = ATαt

• Iterative approach to solving the constrained optimization problem

using Lagrange multipliers
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Two-time-scale Stochastic Approximation (SA)

• Our algorithm is a two-time-scale stochastic approximation algorithm

Faster: xt+1 = ΠX

(
xt + ηt

(
F (xt)−ATαt +Mt+1

) )
Slower: αt+1 = αt + εt(Axt − `∗)

• Timescales dictated by stepsizes ηt and εt

• ηt is larger, or decays at a slower rate, e.g., 1/n0.6

• εt is smaller, or decays at a faster rate, e.g., 1/n0.75

• Intuition:

• Faster time-scale: αt considered quasi-static

• Slower time-scale: xt tracks x∗(αt), the NE corresponding to αt
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Time-scale Separation

• Condition on stepsizes:

ηt =
1

(t+ T1)η
and εt =

1

(t+ T2)ε
,

where 0.5 < η < ε < 1. Importantly,

ε2t
η3t
≤ 1

25



Results

Theorem

Define Nopt = {α | Ax∗(α) = `∗}. Then

• αt converges to the set Nopt, xt converges to x∗(αt), and

lim
t→∞

Axt = `∗,

with probability 1.

• E[‖Axt − `∗‖2] = O
(
ηt + 1

tεt

)
.

The best rate based on above result is O
(
t−0.25+δ

)
, where δ is arbitrarily

small. This is achieved at η = 0.5 + δ/3 and ε = 0.75 + δ.
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Simulations
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Analysis

xt+1 = ΠX

(
xt + ηt

(
F (xt)−ATαt +Mt+1

) )
αt+1 = αt + εt(Axt − `∗)

• Can be expressed as fixed-point iterations:

xt+1 = ΠX
(
xt + ηt(f(xt,αt)− xt +Mt+1)

)
αt+1 = αt + εt(g(αt)−αt + ωt)

• Here

• f(x,α) = x + F (x)−ATα

• g(α) = α+ (Ax∗(α)− `∗)

• ωt = Axt −Ax∗(αt) is the equilibrium noise
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Analysis

xt+1 = ΠX
(
xt + ηt(f(xt,αt)− xt +Mt+1)

)
αt+1 = αt + εt(g(αt)−αt + ωt)

• f(x,α) is contractive in x:

‖f(x1,α)− f(x2,α)‖ ≤ λ‖x1 − x2‖,

for some 0 ≤ λ < 1

• Unique fixed point for faster time-scale for given α - the NE x∗(α)

• g(α) is non-expansive:

‖g(α1)− g(α2)‖ ≤ ‖α1 −α2‖
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Analysis

• Two-time-scale SA widely studied when both time-scales have

contractive mapping

• We have contractive in faster and non-expansive in slower time-scale

• Requires novel analysis

• Leads to a slower decay rate
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An interesting observation

• Why do we have to deal with a non-expansive mapping in the slower

time-scale?

• Projection in the faster time-scale

• Each player has a convex and compact action set

• In the absence of this projection, both time-scales have contractive

mapping1

• A rate of O(1/t) can be achieved2

1Chandak, Siddharth, ”Non-Expansive Mappings in Two-Time-Scale Stochastic

Approximation: Finite-Time Analysis.” arXiv:2501.10806 (2025).
2Chandak, Siddharth. ”O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale

Stochastic Approximation.” arXiv:2504.19375 (2025).
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Scenario II: Discrete Game

Parameters



Problem Formulation

• Manager has to choose from a discrete set of parameters

θ ∈ {1, . . . ,K}
• Can be thought of as K different policies

• Maximize global objective Φ(x; θ)

• Example: Resource Allocation

• Manager decides which subset of resources each player can use

• Each θ ∈ {1, . . . ,K} denote this subset for each player

• Under action θ, player n has only access to resources

Rn(θ) ⊆ {1, . . . , d}
• Examples of practical implementation: Odd-Even rule
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Problem Formulation

• Manager chooses θt at t = 0, . . . ,

• Players update their action using gradient ascent:

xn,t+1 = xn,t + η (∇xnun(xt; θt))

• Manager observes noisy global reward yt = Φ(xt; θt) +Mt
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Formulating the Manager’s Objective

• Manager cares about the objective at Nash equilibrium

• Optimal policy defined with respect to global objective at

corresponding NE:

θ∗ = arg max
θ

Φ(x∗(θ); θ)

• Regret:

E[R(T )] = E

[
T∑
t=1

(Φ(x∗(θ∗); θ∗)− Φ(xt; θt))

]

• Defined w.r.t. what the optimal policy achieves at equilibrium

• Incentivize the manager to choose the optimal policy and allow the

players to converge quickly
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How is this different?

• Cannot switch policy at every step

• Unlike the previous scenario where β could be changed continuously,

we have discrete choices here

• Would learn nothing about the objective at NE
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Distance from NE

• Converges to NE if policy is fixed

• But how long to wait for convergence?
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Distance from NE

• Distance from NE x∗(θ) decreases when policy θ is implemented,

i.e.,

‖xt+1 − x∗(θ)‖ ≤ exp

(
− 1

τc

)
‖xt − x∗(θ)‖,

where policy at time t is θ
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Distance from NE

‖xt+1 − x∗(θ)‖ ≤ exp

(
− 1

τc

)
‖xt − x∗(θ)‖

• τc: ‘approximate’ convergence time to equilibrium

• exp(−1/τc) =
√

1− 2µη + L2
Gη

2

• µ: strongly monotone parameter of game

• LG: Lipschitz constant for concatenated gradient operator G(·)
• η: Stepsize used by players for gradient ascent
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Equilibrium Bandits

• Model this problem as a modification of the stochastic multi-armed

bandit problem

• Each policy is an arm

• The exact true reward (+ stochastic noise) of an arm is known only

after playing it infinitely often

• Solve this problem using optimism-based algorithm

• Modification of Upper Confidence Bound

• Upper Equilibrium Confidence Bound

• Three major additions
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The Key Idea: Bounds on Objective at NE

• Want to determine how the players will behave at equilibrium for a

policy without waiting for convergence

• Recall: Distance from NE x∗(θ) decreases when policy θ is

implemented, i.e.,

‖xt+1 − x∗(θ)‖ ≤ exp

(
− 1

τc

)
‖xt − x∗(θ)‖,

where policy at time t is θ

• Approach: Can use this to get a bound on the global objective at

NE for a policy

• Suppose policy θ is chosen consecutively ` times (from t to t+ `):

Φ(xt+`; θ)− Le−
`
τc ≤ Φ(x∗(θ); θ) ≤ Φ(xt+`; θ) + Le

− `
τc ,

where L is Lipschitz constant for Φ(·; θ).
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Modification II - Epochs of Increasing Length

• Need to keep policy fixed for a consecutive number of times

• Approach: Epoch-based system: policies are changed only at ends

of epochs

• Lengths of epochs increased as a policy is chosen more times

• Intuition: Promising policies are given more time to converge

• If policy θ has been chosen for m epochs, then length of (m+ 1)th

epoch is em+1 time-steps
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Modification III: Noise Averaging

• Manager observes noisy global objective: need to average to

eliminate noise

• Cannot average all rewards from an epoch (or from older epochs):

• Far from equilibrium, hence less information about reward at

equilibrium

• Approach: If policy θ is implemented for ` consecutive steps in an

epoch, take average of last `/2 observed rewards
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UECB: Bring it Together

Algorithm (UECB)

For epoch n = 1, 2, . . .

(1) Implement policy θn = arg maxθ UECBθ for `n = exp(mθn + 1)

time-steps

(2) Estimate:

Φ̂θ,n =
1

`n/2

tn+`n∑
t=tn+`n/2

yt

(3) Update UECB:

UECBθ,n = Φ̂θ,n +
c1
`n/2

exp

(
− `n

2τc

)
+

√
c2σ2

`n/2
log(2t3n)

End
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UECB: Bring it Together

Algorithm (UECB)

For epoch n = 1, 2, . . .

(1) Implement policy θn = arg maxθ UECBθ for `n = exp(mθn + 1)

time-steps

(2) Estimate:

Φ̂θ,n =
1

`n/2

tn+`n∑
t=tn+`n/2

yt

(3) Update UECB:

UECBθ,n = Φ̂θ,n +
c1
`n/2

exp

(
− `n

2τc

)
︸ ︷︷ ︸

Equilibrium Bias

+

√
c2σ2

`n/2
log(2t3n)︸ ︷︷ ︸

Noise Averaging (∼ UCB)

End
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Results

Theorem

The regret achieved by UECB algorithm is bounded as:

E[R(T )] = O

∑
θ 6=θ∗

log(T )

∆θ
+ τc log

(
τc log

(
1

∆θ

))
+ τc log (log(T ))


where ∆θ is the suboptimality gap for policy θ defined w.r.t. equilibrium

rewards.
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Simulations
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Conclusions

• Game control under two different scenarios

• Scenario I: Controllable linear coefficients

• Intuition: pricing and subsidies

• Proposed a two-time-scale method for convergence to desirable NE

• Scenario II: Discrete game control parameters

• Intuition: different policies

• Developed UECB, an optimism-based bandit algorithm

• Can study many other scenarios with varying assumptions and

applications
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Thank You!
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Thank You!

The talk was primarily based on

• Chandak, Siddharth, Ilai Bistritz, and Nicholas Bambos, ”Learning to Control

Unknown Strongly Monotone Games.” arXiv:2407.00575 (2024).

• Chandak, Siddharth, Ilai Bistritz, and Nicholas Bambos. ”Equilibrium Bandits:

Learning Optimal Equilibria of Unknown Dynamics.” International Conference on

Autonomous Agents and Multiagent Systems. (2023)

Results on two-time-scale SA (more discussion on the projection in the faster

time-scale):

• Chandak, Siddharth, ”Non-Expansive Mappings in Two-Time-Scale Stochastic

Approximation: Finite-Time Analysis.” arXiv:2501.10806 (2025).

• Chandak, Siddharth, ”O(1/k) Finite-Time Bound for Non-Linear

Two-Time-Scale Stochastic Approximation.” arXiv:2504.19375 (2025).
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