

Learning to Control Unknown Multi-Agent Systems

Siddharth Chandak

Joint work with Prof. Ilai Bistritz (Tel Aviv University) and Prof. Nicholas Bambos (Stanford University)

Outline

- Overview
 - Game Control
 - Strongly Monotone Games and Nash Equilibrium
- Scenario I Controllable Linear Coefficients
 - Two-time-scale Stochastic Approximation
- Scenario II Discrete Game Parameters
 - Equilibrium Bandits

Overview

Multi-Agent Systems

Multi-Agent Games

- ullet Game with N agents or players
- Each player n takes action x_n
- Utility (Reward): $u_n(x_1, \ldots, x_N)$

Local Objective

• Local Objective: Each player n wants to maximize their reward $u_n(\mathbf{x}_1,\dots,\mathbf{x}_N)$ under the constraint of limited feedback

Bandit Feedback

Game Manager

- Game Manager or System Controller
 - ullet Control some parameter heta of the game
 - For example, can control the action set of players, or the utilities of players
 - We focus on the latter
- Have their own objective the "Global Objective"
 - Each player is optimizing for the local objective of $u_n(\mathbf{x}; \theta)$
 - The manager is optimizing for the global objective of $\Phi(\mathbf{x}; \theta)$
 - Bandit feedback

Game Control

Evolution of Players' Actions

- How do players update their actions?
- Converge to Nash equilibrium?
- We focus on a class of games called Strongly Monotone Games

Strongly Monotone Games and Nash Equilibrium

Strongly Monotone Games

- Class of continuous action games
- Unique pure Nash Equilibrium (NE)
- Each player performing gradient ascent on their utilities leads to convergence to NE
 - Stronger than just convergence
 - Intuitively: multi-agent extension of strongly concave functions

Definition

- Suppose player n chooses actions in $\mathcal{X}_n \subseteq \mathbb{R}^d$ where \mathcal{X}_n is convex and compact
- \bullet Define the concatenated gradient operator $G(\cdot):\mathbb{R}^{Nd}\mapsto\mathbb{R}^{Nd}$ as

$$G(\mathbf{x}) = (\nabla_{x_1} u_1(x_1, \mathbf{x}_{-1}), \dots, \nabla_{x_N} u_N(x_N, \mathbf{x}_{-N})),$$

where $\mathbf{x} = (x_1, \dots, x_N)$

Definition 1 (Strongly Monotone Games)

There exists $\mu > 0$ such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$,

$$\langle \mathbf{y} - \mathbf{x}, G(\mathbf{y}) - G(\mathbf{x}) \rangle \le -\mu \|\mathbf{y} - \mathbf{x}\|^2$$

Nash Equilibrium

• Suppose each player updates their actions as follows (for stepsize η_t):

$$x_{n,t+1} = x_{n,t} + \eta_t \nabla_{x_n} u_n(x_{n,t}, \mathbf{x}_{-n,t})$$

ullet Converges to unique pure NE \mathbf{x}^*

Definition 2

An action profile \mathbf{x}^* is a pure Nash equilibrium (NE) if $u_n(x_n^*, \mathbf{x}^*_{-n}) \geq u_n(x_n, \mathbf{x}^*_{-n})$, for all $x_n \in \mathcal{X}_n$ and all $n \in \mathcal{N}$.

Is this NE what we want?

- A NE is not always desirable
- Issues:
 - Inequality
 - Inefficiency Braess' Paradox
 - Operational Issues Resource Allocation Games

Resource Allocation Games

- \bullet K resources
- \bullet Each player's action is $K-{\rm dimensional},$ where the $k^{\rm th}$ dimension represents the amount of $k^{\rm th}$ resource they use
- Example: electricity grids and wireless channels
- At NE often a few resources are heavily used, creating pressure on system

	Hour 1	Hour 2	 Hour 24
Player 1	250 W	1000 W	 100 W
Player 2	150 W	800 W	 50 W
÷		:	
Player N	400 W	1500 W	 0 W

A Controlled Strongly Monotone Game

- Recall that utilities are given by $u_n(\mathbf{x}; \theta)$
- Players update their actions using gradient ascent

$$x_{n,t+1} = x_{n,t} + \eta_t \nabla_{x_n} u_n(\mathbf{x}_t; \theta_t)$$

ullet For fixed heta, players converge to some $\mathbf{x}^*(heta)$

Learning to Control Unknown Multi-Agent Systems

• **Problem Statement:** How to choose the control θ_t such that the players converge to a desirable NE under noisy bandit feedback?

Scenario I: Controllable Linear Coefficients

Linear Coefficients

- Each player takes action $x_n = (x_n^{(1)}, \dots, x_n^{(d)})$ in a compact and convex set $\mathcal{X}_n \subseteq \mathbb{R}^d$
- Utility for each player is given by:

$$u_n(\mathbf{x}, \beta_n^{(1)}, \dots, \beta_n^{(d)}) = r_n(\mathbf{x}) - \sum_{i=1}^d \beta_n^{(i)} x_n^{(i)}$$

- $\bullet \ r_n(x)$ reward from 'original' uncontrolled game without any control
- $\sum_{i=1}^d \beta_n^{(i)} x_n^{(i)}$ linear shift in utility

Control Parameter and Manager's Objective

- ullet $\sum_{i=1}^d eta_n^{(i)} x_n^{(i)}$ linear shift in utility
- ullet The controllable game parameter heta is the Nd-dimensional vector $oldsymbol{eta}$
- Steer the players' NE towards a point that satisfies K linear constraints:

$$A\mathbf{x} = \ell^*$$

ullet Manager only observes the constraint violation $A{f x}_t - \ell^*$

Application: Resource Allocation

- ullet Recall that $x_n^{(i)}$ denotes how much player n uses resource i
- Suppose the constraints are of the form

$$\sum_{n=1}^{N} x_n^{(i)} = \ell_i^*$$

for each resource $i \in \{1, \dots, K\}$

- Then the manager can set β_i for each resource i (constant across all players)
 - Additional price or subsidy on using a resource
- Can be extended to weighted resource allocation by separate price for each player as well

Assumptions and Problem Formulation

- The uncontrolled game with utilities $r_n(\mathbf{x})$ is strongly monotone
 - Let $F(\mathbf{x}) \coloneqq (\nabla_{x_1} r_1(x_1, \mathbf{x}_{-1}), \dots, \nabla_{x_N} r_N(x_N, \mathbf{x}_{-N}))$

$$\langle \mathbf{y} - \mathbf{x}, F(\mathbf{y}) - F(\mathbf{x}) \rangle \le -\mu \|\mathbf{y} - \mathbf{x}\|^2$$

- Gradient operator for controlled game is $G(\mathbf{x}) = F(\mathbf{x}) \boldsymbol{\beta}$
- Implies that the controlled game is also strongly monotone:
- Mapping $F(\cdot)$ is Lipschitz continuous
- At each timestep, player n observes noisy version of gradient of reward: $\nabla_{x_n} r_n(\mathbf{x}_t) + M_{n,t+1}$
 - ullet $M_{n,t+1}$ is martingale difference noise with bounded second moment
- Slater's condition holds

Online Game Control Algorithm

Algorithm (Online Game Control)

Initialization: Let $x_0 \in \mathcal{X}$ and $\alpha_0 \in \mathbb{R}^K$.

For each turn $t \ge 0$ do

- 1. The manager broadcasts $lpha_t$ to the players
- 2. The manager observes the vector $A\mathbf{x}_t \ell^*$ and updates the controlled input using

$$\alpha_{t+1} = \alpha_t + \epsilon_t (A\mathbf{x}_t - \boldsymbol{\ell}^*).$$

3. Each player n computes $\beta_{n,t}=A_n^T\alpha_t$ and updates its action using gradient ascent:

$$x_{n,t+1} = \prod_{\mathcal{X}_n} \left(x_{n,t} + \eta_t \left(\nabla_{x_n} r_n(\mathbf{x}_t) + M_{n,t+1} - \beta_{n,t} \right) \right)$$

where $\Pi_{\mathcal{X}_n}$ is the Euclidean projection into \mathcal{X}_n .

End

Understanding the Algorithm

Vectorized Form:

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \Big(\mathbf{x}_t + \eta_t \left(F(\mathbf{x}_t) - A^T \alpha_t + M_{t+1} \right) \Big)$$

$$\boldsymbol{\alpha}_{t+1} = \boldsymbol{\alpha}_t + \epsilon_t (A\mathbf{x}_t - \boldsymbol{\ell}^*)$$

- Instead of directly transmitting $\beta_t \in \mathbb{R}^{Nd}$, manager updates and transmits $\alpha_t \in \mathbb{R}^K$, such that $\beta_t = A^T \alpha_t$
- Iterative approach to solving the constrained optimization problem using Lagrange multipliers

Two-time-scale Stochastic Approximation (SA)

• Our algorithm is a two-time-scale stochastic approximation algorithm

Faster:
$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \Big(\mathbf{x}_t + \eta_t \left(F(\mathbf{x}_t) - A^T \alpha_t + M_{t+1} \right) \Big)$$

Slower: $\alpha_{t+1} = \alpha_t + \epsilon_t (A\mathbf{x}_t - \ell^*)$

- ullet Timescales dictated by stepsizes η_t and ϵ_t
 - η_t is larger, or decays at a slower rate, e.g., $1/n^{0.6}$
 - ullet ϵ_t is smaller, or decays at a faster rate, e.g., $1/n^{0.75}$
- Intuition:
 - ullet Faster time-scale: $lpha_t$ considered quasi-static
 - ullet Slower time-scale: \mathbf{x}_t tracks $\mathbf{x}^*(oldsymbol{lpha}_t)$, the NE corresponding to $oldsymbol{lpha}_t$

Time-scale Separation

• Condition on stepsizes:

$$\eta_t = \frac{1}{(t+T_1)^\eta} \text{ and } \epsilon_t = \frac{1}{(t+T_2)^\epsilon},$$

where $0.5 < \eta < \epsilon < 1$. Importantly,

$$\frac{\epsilon_t^2}{\eta_t^3} \le 1$$

Results

Theorem

Define $\mathcal{N}_{opt} = \{ \boldsymbol{\alpha} \mid A\mathbf{x}^*(\boldsymbol{\alpha}) = \boldsymbol{\ell}^* \}$. Then

ullet $lpha_t$ converges to the set \mathcal{N}_{opt} , \mathbf{x}_t converges to $\mathbf{x}^*(oldsymbol{lpha}_t)$, and

$$\lim_{t\to\infty} A\mathbf{x}_t = \boldsymbol{\ell}^*,$$

with probability 1.

• $\mathbb{E}[\|A\mathbf{x}_t - \boldsymbol{\ell}^*\|^2] = \mathcal{O}\left(\eta_t + \frac{1}{t\epsilon_t}\right).$

The best rate based on above result is $\mathcal{O}\left(t^{-0.25+\delta}\right)$, where δ is arbitrarily small. This is achieved at $\eta=0.5+\delta/3$ and $\epsilon=0.75+\delta$.

Simulations

Analysis

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \Big(\mathbf{x}_t + \eta_t \left(F(\mathbf{x}_t) - A^T \alpha_t + M_{t+1} \right) \Big)$$

$$\boldsymbol{\alpha}_{t+1} = \boldsymbol{\alpha}_t + \epsilon_t (A \mathbf{x}_t - \boldsymbol{\ell}^*)$$

Can be expressed as fixed-point iterations:

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left(\mathbf{x}_t + \eta_t (f(\mathbf{x}_t, \boldsymbol{\alpha}_t) - \mathbf{x}_t + M_{t+1}) \right)$$

$$\boldsymbol{\alpha}_{t+1} = \boldsymbol{\alpha}_t + \epsilon_t (g(\boldsymbol{\alpha}_t) - \boldsymbol{\alpha}_t + \omega_t)$$

- Here
 - $f(\mathbf{x}, \boldsymbol{\alpha}) = \mathbf{x} + F(\mathbf{x}) A^T \boldsymbol{\alpha}$
 - $g(\alpha) = \alpha + (A\mathbf{x}^*(\alpha) \boldsymbol{\ell}^*)$
 - $\omega_t = A\mathbf{x}_t A\mathbf{x}^*(\boldsymbol{\alpha}_t)$ is the equilibrium noise

Analysis

$$\mathbf{x}_{t+1} = \Pi_{\mathcal{X}} \left(\mathbf{x}_t + \eta_t (f(\mathbf{x}_t, \boldsymbol{\alpha}_t) - \mathbf{x}_t + M_{t+1}) \right)$$

$$\boldsymbol{\alpha}_{t+1} = \boldsymbol{\alpha}_t + \epsilon_t (g(\boldsymbol{\alpha}_t) - \boldsymbol{\alpha}_t + \omega_t)$$

• $f(\mathbf{x}, \boldsymbol{\alpha})$ is contractive in \mathbf{x} :

$$||f(\mathbf{x}_1, \boldsymbol{\alpha}) - f(\mathbf{x}_2, \boldsymbol{\alpha})|| \le \lambda ||\mathbf{x}_1 - \mathbf{x}_2||,$$

for some $0 \le \lambda < 1$

- ullet Unique fixed point for faster time-scale for given lpha the NE $\mathbf{x}^*(lpha)$
- $g(\alpha)$ is non-expansive:

$$||g(\boldsymbol{\alpha}_1) - g(\boldsymbol{\alpha}_2)|| \le ||\boldsymbol{\alpha}_1 - \boldsymbol{\alpha}_2||$$

Analysis

- Two-time-scale SA widely studied when both time-scales have contractive mapping
- We have contractive in faster and non-expansive in slower time-scale
 - Requires novel analysis
 - Leads to a slower decay rate

An interesting observation

- Why do we have to deal with a non-expansive mapping in the slower time-scale?
- Projection in the faster time-scale
 - Each player has a convex and compact action set
- In the absence of this projection, both time-scales have contractive mapping¹
 - A rate of $\mathcal{O}(1/t)$ can be achieved²

¹Chandak, Siddharth, "Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis." *arXiv:2501.10806* (2025).

 $^{^2}$ Chandak, Siddharth. "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation." arXiv:2504.19375 (2025).

Scenario II: Discrete Game Parameters

Problem Formulation

- Manager has to choose from a discrete set of parameters $\theta \in \{1, \dots, K\}$
 - ullet Can be thought of as K different policies
- Maximize global objective $\Phi(\mathbf{x}; \theta)$
- Example: Resource Allocation
 - Manager decides which subset of resources each player can use
 - Each $\theta \in \{1, \dots, K\}$ denote this subset for each player
 - Under action θ , player n has only access to resources $\mathcal{R}_n(\theta) \subseteq \{1,\ldots,d\}$
 - Examples of practical implementation: Odd-Even rule

Problem Formulation

- Manager chooses θ_t at $t = 0, \ldots,$
- Players update their action using gradient ascent:

$$x_{n,t+1} = x_{n,t} + \eta \left(\nabla_{x_n} u_n(\mathbf{x}_t; \theta_t) \right)$$

• Manager observes noisy global reward $y_t = \Phi(\mathbf{x}_t; \theta_t) + M_t$

Formulating the Manager's Objective

- Manager cares about the objective at Nash equilibrium
- Optimal policy defined with respect to global objective at corresponding NE:

$$\theta^* = \arg\max_{\theta} \Phi(\mathbf{x}^*(\theta); \theta)$$

• Regret:

$$\mathbb{E}[R(T)] = \mathbb{E}\left[\sum_{t=1}^{T} (\Phi(\mathbf{x}^*(\theta^*); \theta^*) - \Phi(\mathbf{x}_t; \theta_t))\right]$$

- Defined w.r.t. what the optimal policy achieves at equilibrium
- Incentivize the manager to choose the optimal policy and allow the players to converge quickly

How is this different?

- Cannot switch policy at every step
 - Unlike the previous scenario where \(\beta \) could be changed continuously, we have discrete choices here
 - Would learn nothing about the objective at NE

Distance from NE

• Converges to NE if policy is fixed

• But how long to wait for convergence?

Distance from NE

• Distance from NE $\mathbf{x}^*(\theta)$ decreases when policy θ is implemented, i.e.,

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*(\theta)\| \le \exp\left(-\frac{1}{\tau_c}\right) \|\mathbf{x}_t - \mathbf{x}^*(\theta)\|,$$

where policy at time t is θ

Distance from NE

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*(\theta)\| \le \exp\left(-\frac{1}{\tau_c}\right) \|\mathbf{x}_t - \mathbf{x}^*(\theta)\|$$

- au_c : 'approximate' convergence time to equilibrium
- $\exp(-1/\tau_c) = \sqrt{1 2\mu\eta + L_G^2\eta^2}$
 - ullet μ : strongly monotone parameter of game
 - ullet L_G : Lipschitz constant for concatenated gradient operator $G(\cdot)$
 - η : Stepsize used by players for gradient ascent

Equilibrium Bandits

- Model this problem as a modification of the stochastic multi-armed bandit problem
 - Each policy is an arm
 - The exact true reward (+ stochastic noise) of an arm is known only after playing it infinitely often
- · Solve this problem using optimism-based algorithm
 - Modification of Upper Confidence Bound
 - Upper Equilibrium Confidence Bound
 - Three major additions

The Key Idea: Bounds on Objective at NE

- Want to determine how the players will behave at equilibrium for a policy without waiting for convergence
 - Recall: Distance from NE $\mathbf{x}^*(\theta)$ decreases when policy θ is implemented, i.e.,

$$\|\mathbf{x}_{t+1} - \mathbf{x}^*(\theta)\| \le \exp\left(-\frac{1}{\tau_c}\right) \|\mathbf{x}_t - \mathbf{x}^*(\theta)\|,$$

where policy at time t is θ

- Approach: Can use this to get a bound on the global objective at NE for a policy
 - Suppose policy θ is chosen consecutively ℓ times (from t to $t + \ell$):

$$\Phi(\mathbf{x}_{t+\ell};\theta) - Le^{-\frac{\ell}{\tau_c}} \le \Phi(\mathbf{x}^*(\theta);\theta) \le \Phi(\mathbf{x}_{t+\ell};\theta) + Le^{-\frac{\ell}{\tau_c}},$$

where L is Lipschitz constant for $\Phi(\cdot; \theta)$.

Modification II - Epochs of Increasing Length

- Need to keep policy fixed for a consecutive number of times
- Approach: Epoch-based system: policies are changed only at ends of epochs
- Lengths of epochs increased as a policy is chosen more times
 - Intuition: Promising policies are given more time to converge
 - • If policy θ has been chosen for m epochs, then length of $(m+1)^{th}$ epoch is e^{m+1} time-steps

Modification III: Noise Averaging

- Manager observes noisy global objective: need to average to eliminate noise
- Cannot average all rewards from an epoch (or from older epochs):
 - Far from equilibrium, hence less information about reward at equilibrium
- Approach: If policy θ is implemented for ℓ consecutive steps in an epoch, take average of last $\ell/2$ observed rewards

UECB: Bring it Together

Algorithm (UECB)

For epoch $n = 1, 2, \ldots$

- (1) Implement policy $\theta_n=\arg\max_{\theta} \mathsf{UECB}_{\theta}$ for $\ell_n=\exp(m_{\theta_n}+1)$ time-steps
- (2) Estimate:

$$\hat{\Phi}_{\theta,n} = \frac{1}{\ell_n/2} \sum_{t=t_n+\ell_n/2}^{t_n+\ell_n} y_t$$

(3) Update UECB:

$$\mathsf{UECB}_{\theta,n} = \hat{\Phi}_{\theta,n} + \frac{c_1}{\ell_n/2} \exp\left(-\frac{\ell_n}{2\tau_c}\right) + \sqrt{\frac{c_2\sigma^2}{\ell_n/2}\log(2t_n^3)}$$

End

UECB: Bring it Together

Algorithm (UECB)

For epoch $n=1,2,\ldots$

- (1) Implement policy $\theta_n = \arg\max_{\theta} \mathsf{UECB}_{\theta}$ for $\ell_n = \exp(m_{\theta_n} + 1)$ time-steps
- (2) Estimate:

$$\hat{\Phi}_{\theta,n} = \frac{1}{\ell_n/2} \sum_{t=t_n+\ell_n/2}^{t_n+\ell_n} y_t$$

(3) Update UECB:

$$\mathsf{UECB}_{\theta,n} = \hat{\Phi}_{\theta,n} + \underbrace{\frac{c_1}{\ell_n/2} \exp\left(-\frac{\ell_n}{2\tau_c}\right)}_{\mathsf{Equilibrium \ Bias}} + \underbrace{\sqrt{\frac{c_2\sigma^2}{\ell_n/2} \log(2t_n^3)}}_{\mathsf{Noise \ Averaging}\ (\sim \ \mathsf{UCB})}$$

End

Results

Theorem

The regret achieved by UECB algorithm is bounded as:

$$\mathbb{E}[R(T)] = \mathcal{O}\left(\sum_{\theta \neq \theta^*} \frac{\log(T)}{\Delta_{\theta}} + \tau_c \log\left(\tau_c \log\left(\frac{1}{\Delta_{\theta}}\right)\right) + \tau_c \log\left(\log(T)\right)\right)$$

where Δ_{θ} is the suboptimality gap for policy θ defined w.r.t. equilibrium rewards.

Simulations

Conclusions

- Game control under two different scenarios
- Scenario I: Controllable linear coefficients
 - Intuition: pricing and subsidies
 - Proposed a two-time-scale method for convergence to desirable NE
- Scenario II: Discrete game control parameters
 - Intuition: different policies
 - Developed UECB, an optimism-based bandit algorithm
- Can study many other scenarios with varying assumptions and applications

Thank You!

Thank You!

The talk was primarily based on

- Chandak, Siddharth, Ilai Bistritz, and Nicholas Bambos, "Learning to Control Unknown Strongly Monotone Games." arXiv:2407.00575 (2024).
- Chandak, Siddharth, Ilai Bistritz, and Nicholas Bambos. "Equilibrium Bandits:
 Learning Optimal Equilibria of Unknown Dynamics." International Conference on Autonomous Agents and Multiagent Systems. (2023)

Results on two-time-scale SA (more discussion on the projection in the faster time-scale):

- Chandak, Siddharth, "Non-Expansive Mappings in Two-Time-Scale Stochastic Approximation: Finite-Time Analysis." arXiv:2501.10806 (2025).
- ullet Chandak, Siddharth, "O(1/k) Finite-Time Bound for Non-Linear Two-Time-Scale Stochastic Approximation." arXiv:2504.19375 (2025).